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Abstract The development of proton-exchange membranes for fuel cells has generated
global interest in order to have a potential source of power for stationary and portable
applications. The membrane is the heart of a fuel cell and the performance of a fuel cell
depends largely on the physico-chemical nature of the membrane and its stability in the
hostile environment of hydrogen and oxygen at elevated temperatures. Efforts are be-
ing made to develop membranes that are similar to commercial Nafion membranes in
performance and are available at an affordable price. The radiation grafting of styrene
and its derivatives onto existing polymer films and subsequent sulfonation of the grafted
films has been an attractive route for developing these membranes with required chem-
istry and properties. The process of radiation grafting offers enormous possibilities for
design of the polymer architecture by careful variation of the irradiation and the graft-
ing conditions. A wide range of crosslinkers are available, which introduce stability to the
membrane during its operation in fuel cells. Crosslinking of the base polymer prior to
grafting has also been an attractive means of obtaining membranes with better perform-
ance. A systematic presentation is made of the grafting process into different polymers,
the physical properties of the resultant membranes, and the fuel cell application of these
membranes.

Keywords Polymer electrolyte fuel cell · Proton exchange membrane · Radiation grafting

Abbreviations
ATR Attenuated total reflection spectroscopy
cH+ Volumetric density of protons
DG Degree of grafting
DH+ Proton diffusion coefficient
DSC Differential scanning calorimetry
DVB Divinylbenzene
ESR Electron spin resonance
ETFE Poly(ethylene-alt-tetrafluoroethylene)
FEP Poly(tetrafluoroethylene-co-hexafluoropropylene)
FTIR Fourier transform infrared spectroscopy
G value Radiation chemical yield
Gy Gray
IEC Ion exchange capacity
MEA Membrane electrode assembly
MFI Melt flow index
m Mass
n(H2O) Number of water molecules
n(SO3H) Number of exchange sites
PEFC Polymer electrolyte fuel cell
PFA Poly(tetrafluoroethylene-co-perfluorovinyl ether)
pKa Acid dissociation constant
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PSSA Polystyrene sulfonic acid
PTFE Poly(tetrafluoroethylene)
PVDF Poly(vinylidene fluoride)
SANS Small angle neutron scattering
SAXS Small angle X-ray scattering
SEM Scanning electron microscopy
–SO3H Sulfonic acid
TAC Triallylcyanurate
TFS α,β,β-Trifluorostyrene
Tg Glass transition temperature
TGA Thermogravimetric analysis
Tm Melting temperature
XMA X-ray microprobe analysis
XPS X-ray photoelectron spectroscopy
φ Water uptake
λ Hydration number
σH+ Proton conductivity

1
Introduction

Membrane science and technology is the fascinating world of polymers,
which extends from separation science and bioreactors to environmental care
and electrochemistry [1]. The attraction of membranes lies in their energy-
efficient processes combined with their low cost separation, as compared
to conventional techniques. The versatile nature of membranes has made
their application areas grow enormously. Membranes with different shapes
and chemical designs are available, which makes them suitable for processes
such as nanofiltration, reverse osmosis, pervaporation, bioreactors, dialysis,
electrodialysis, electrolysis, and fuel cells. Membranes have generated con-
siderable interest as solid polymer electrolytes in fuel cells, which have been
identified as a promising source of power for stationary and portable appli-
cations [2]. The fuel cell offers several advantages in terms of the high power
densities and having water as a by-product, which makes it an eco-friendly
alternative for energy production. The membrane in a fuel cell offers sup-
port structure for the electrodes and allows proton transport across its matrix
from anode to cathode. The fuel cell requires a proton exchange membrane
that shows good mechanical strength, high chemical stability, and appropri-
ate ionic conductivity (e.g., > 10–2 S cm–1). In the current state of technology,
perfluorinated membrane materials such as Nafion (DuPont, USA), Flemion
(Asahi Glass, Japan), and Aciplex (Asahi Kasei, Japan) are used predomin-
antly in polymer electrolyte fuel cells, due to their attractive conductivity
and chemical stability. However, for market introduction of fuel cell prod-
ucts, cost-competitive membrane technology has to be developed. The Nafion
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membrane, for instance, has shown good performance in fuel cells but has
certain limitations, i.e., it has poor ionic conductivity at low humidity and
is available at an expensive rate of ∼ 500 $/m2. The costs for Nafion, for ex-
ample, become attractive only at high production volumes [3]. Consequently,
the search for new membrane materials with low cost and the required
electrochemical characteristics, along with performances matching those of
Nafion, is continuing and has become the most focused research area in the
design of polymer electrolyte fuel cells.

Both the physical and chemical factors are essential for the establishment of
a critical relationship between the structure and performance of a membrane
in operation. Therefore, designing a membrane needs proper understand-
ing of both the polymeric material and the fuel cell requirements. With no
other membrane in sight and under the complexity of inventing new materi-
als, it becomes necessary to modify existing materials into required membrane
structures. A great deal of research effort has been directed to the develop-
ment of membranes by introducing ionic functionality into different polymers.
The sulfonation of polymer films such as in polyetheretherketone and poly-
sulfone is one such approach being used to develop ionic membranes [4–6].
However, the ionic character of membranes needs to be accompanied by their
good performance in fuel cell application. That is why the current efforts have
been directed to the modification of existing polymer films in such a way
that the modified material acquires desired functionality and performs well.
Although the base matrix may be any type of polymer, the selection of the
fluorinated or perfluorinated polymer matrix has been a prime consideration
due to the better chemical and thermal resistance that these polymers provide.
Consequently, the functionalization of these polymers by radiation grafting of
appropriate monomers has become an attractive way to develop such mem-
branes. It is quite spectacular to envisage that polymers can be altered into
materials that display a unique combination of characteristics such as ionic
nature, water absorption, and high conductivity. Enormous work has been car-
ried out on the graft modification of polymers and several reviews have been
published in this domain [7–13]. Recent reviews related to radiation grafting
on fluoropolymers provide thorough knowledge in this area [14–20].

We have confined our goal to reviewing the state-of-the-art in the develop-
ment of radiation grafted proton-exchange membranes. This review provides
an up-to-date summary of the synthesis, properties, and applications of radi-
ation grafted membranes as solid polymer electrolytes in fuel cells.

2
Preparation of Radiation Grafted Membranes

A graft copolymer, in general, can be defined as consisting of one or more
types of molecules, as block, connected as side chains to a main chain. These
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side chains should have constitutional or configurational features that differ
from those of the main chain. The modification of polymers through graft
polymerization offers an interesting route for achieving membranes with de-
sirable characteristics. Depending on the chemical nature of the monomer,
membranes with desired physico-chemical properties may be fabricated.
Therefore, if the monomer is ionic in nature, the grafted membrane acquires
ionic character with little influence on most of its inherent characteristics.
In this section we describe vital aspects that influence membrane fabrication
and performance.

2.1
Nature of Radiation

Membrane development requires activation of the entire bulk of the film so
that modification across the film may be achieved. This makes it necessary
to use high energy radiation, which may penetrate and produce ionization
of the polymer matrix. The nature of the radiation has significant impact
on the physical and chemical properties of the resultant membrane. A wide
range of types of high energy radiation are available to be used for the graft-
ing process. The radiation may be either electromagnetic in nature, such as
X-rays and gamma rays, or charged particles, such as beta particles and elec-
trons. The basic difference between the two types of radiation lies in the
higher penetration of the electromagnetic radiation. Charged particles lose
energy almost continuously through a large number of small energy trans-
fers while passing through matter. However, photons tend to lose a relatively
large amount of intensity by interaction with matter. The advantage of elec-
tromagnetic radiation, such as gamma rays, is that the fractions of photons
that do not interact with a finite thickness of the material are transmitted with
their original energies and directions (exponential attenuation law). Hence,
the dose rate of radiation may be easily controlled by the use of a suitable
attenuator without influencing the photon energy, which is a very important
aspect in radiation-initiated polymerization of monomers.

Although different gamma sources are available today, the most versatile
gamma radiation source is Co60, which has a long half-life of 5.3 years and
emits radiation of 1.17 and 1.33 MeV (mean value of 1.25 MeV). Two differ-
ent types of gamma radiation source are available for irradiation. One of the
sources is a cavity-type unit where a hollow source in the form of a cylin-
der remains stationary. The Co60 remains in this cylindrical structure as the
pins. The sample is introduced into this cylinder cavity by means of a mov-
ing drawer. The sample moves down inside the cavity during the exposure
stage. Once the irradiation is over, the sample is drawn out and may be sub-
sequently removed. The second type of source is a cave-type where Co60 is
kept in a shielded container. The whole unit is kept underground and the
source moves out with the help of a moving belt for irradiation of a station-
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ary sample. The latter type is usually used for the irradiation of samples at an
industrial scale.

Exposure of the polymer to radiation is expressed as the absorbed dose.
The absorbed radiation dose is defined as the amount of energy imparted
to the matter. The units initially used for the radiation dose were rad and
Mrad. The most recent unit of radiation is Gray (Gy), which corresponds to
104 erg g–1. For higher doses, another unit, kilogray (kGy), is used. The dose
rate, therefore, is defined as the adsorbed dose per unit time (Gy min–1). Since
radiation grafting proceeds by the generation of free radicals on the polymer
as well as on the monomer, the G value (i.e., radiation chemical yield, ex-
pressed as the number of free radicals generated for 100 eV energy absorbed
per gram) plays an important role in the grafting process. For most polymers
the G value remains in the range 2–3.

2.2
Graft Polymerization

Radiation-induced grafting is a process where, in a first step, an active site is
created in the preexisting polymer. This site is usually a free radical, where
the polymer chain behaves like a macroradical. This may subsequently ini-
tiate the polymerization of a monomer, leading to the formation of a graft
copolymer structure where the backbone is represented by the polymer be-
ing modified, and the side chains are formed from the monomer (Fig. 1). This
method offers the promise of polymerization of monomers that are difficult
to polymerize by conventional methods without residues of initiators and cat-
alysts. Moreover, polymerization can be carried out even at low temperatures,
unlike polymerization with catalysts and initiators. Another interesting as-

Fig. 1 Radiation-induced grafting
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pect of the radiation grafting process is that the grafting may be carried out
onto a polymer irrespective of its shape or form. Still, membrane develop-
ment requires that the grafting is carried out on polymers already existing in
the form of a film so that the resultant material remains in sheet form. This
overcomes the problem of shaping a grafted polymer bulk into a thin foil.
Graft polymerization using high energy radiation is one of the most conve-
nient and the most effective way to develop membranes. By virtue of the high
energy of radiation, the photon penetrates effectively into the polymer bulk
and activates the matrix thoroughly. This process, therefore, offers a unique
way to combine the properties of two highly incompatible polymers. Another
attractive feature of radiation grafting is that the degree of grafting may be
easily controlled by proper monitoring of the radiation dose, dose rate, and
the reaction conditions.

Radiation grafting may be carried out by using three different op-
tions [21, 22]:

1. Simultaneous radiation grafting is where both the polymer and the
monomer are exposed to radiation. In situ free radical sites are generated
and the polymerization of the monomer is initiated. The limitation of this
method is that the monomer is continuously exposed to radiation during
the grafting reaction and hence extensive homopolymerization proceeds
parallel to the grafting reaction, which leads to monomer wastage and a
low level of grafting efficiency in a system.

2. Preirradiation grafting (hydroperoxide method) involves activation of the
polymer by exposure to radiation under air, which results in the creation
of radicals along the macromolecular backbone. These radicals subse-
quently interact with the oxygen and form peroxides. The graft polymer-
ization is initiated by the decomposition of these peroxides at an elevated
temperature. The drawback of this process is that significantly high irradi-
ation doses are needed to achieve a sufficient number of hydroperoxides to
accomplish reasonable graft levels, which leads to drastic changes in the
physical structure of the polymer and oxidative degradation, even before
any grafting is initiated and this is subsequently reflected in the membrane
characteristics.

3. Preirradiation grafting (trapped radicals method) involves irradiation of
the polymer under inert atmosphere or under vacuum. As a result, the
radicals are formed and remain trapped within the polymer matrix. These
radicals subsequently initiate the grafting of a monomer.

It is important to mention that because of the inherent differences in the ir-
radiation approaches, the physical characteristics of the membranes will be
dependent on the adopted grafting process. The extent of polymerization is
expressed as the degree of grafting (DG), which is defined as the percentage
mass of the grafted component within the copolymer matrix. On the other
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hand, grafting efficiency refers to the percentage conversion of the monomer
into the grafted component with respect to the total monomer conversion.

2.3
Radiation Effects on Polymers

Knowledge of the influence of irradiation on polymers is extremely important
because even a low irradiation dose may introduce significant alteration in the
physical structure of the polymer prior to any grafting being accomplished.
The outstanding properties of fluoropolymers, such as excellent chemical
resistance, mechanical strength, high temperature stability, and good weath-
ering make them strong candidates as membranes for a highly oxidizing
environment such as in fuel cells. However, interaction of the high energy
radiation with such polymers may induce significant physical and chem-
ical changes. The irradiation causes ionization of the matrix leading to the
formation of ions, radicals, and excited species. The ultimate result is re-
flected in the chain scission and crosslinking, along with the formation of
volatiles, leading to significant variation in the molecular weight of the poly-
mer. The magnitude of these processes will be dependent not only on the
chemical nature of the polymer matrix, but also on the nature of the radi-
ation, temperature of the irradiation, and irradiation doses. The irradiation
medium may further induce chemical changes depending on the nature of the
medium.

Among the fluoropolymers, poly(tetrafluoroethylene) (PTFE) undergoes
severe degradation even under mild irradiation conditions both under air and
in vacuum [21]. The radiation sensitivity of PTFE is so high that it is readily
converted into a low molecular weight fine powder under ionizing radiation.
The irradiation leads to the formation of acid fluoride (–COF) groups within
the polymer matrix, which easily hydrolyze into carboxylic groups (–COOH)
in contact with atmospheric humid air [23, 24]. This is the reason that sur-
face concentration of –COOH increases with increasing irradiation doses and
enhances its surface energy [25]. The polymer degradation is associated with
the formation of chain end free radicals, (–CF2–·CF2) or chain alkyl radicals,
(–CF2–·CF–CF2–), where chain end radicals originate as a result of the main
chain scission as observed by electron spin resonance (ESR) [26]. This con-
tributes to the considerable loss in thermal stability of the irradiated polymer
and becomes so pronounced that the initial decomposition temperature, as
observed in thermogravimetric analysis, is brought down from 530 to 240 ◦C
for an irradiation dose of 100 kGy [27].

The radiation chemistry of copolymers of tetrafluoroethylene with other
perfluorinated moieties, such as hexafluoropropylene, is almost identical to
that of PTFE with the difference that the relative magnitude of crosslink-
ing and scission varies significantly. The various chemical moieties that have
been identified under irradiation are presented in Fig. 2. Although these stud-
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Fig. 2 Possible radicals formed on radiolysis of FEP (redrawn from [30])

ies on radiolysis of poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP)
are well supported by the studies of Iwasaki et al. [28], there is less agree-
ment on the nature of the radicals and their quantification at different
doses [29, 30].

The irradiation temperature of the polymer has distinct influence on the
relative proportions of the radical moieties. The irradiation of FEP at a tem-
perature as low as 77 K involves the radicals I and II as the major contributors,
while very little originates in the form of III and IV. However, the irradi-
ation at room temperature (300 K) shows a much higher contribution of
chain end radicals, with the G values being 0.22 and 2.0 at 77 and 300 K, re-
spectively. As far as the radical concentration in FEP as a function of the
irradiation dose at 77 and 300 K is concerned, the radical concentration at
300 K is much higher than at the lower temperature, probably due to the
enhanced molecular mobility and resultant chain scission at higher tempera-
ture [30]. Identification of the radical I as one of the principal radicals on
radiolysis at 77 and 300 K is consistent with the main chain scission be-
ing the major bond-breaking step during gamma irradiation of FEP at both
these temperatures. These observations are supported by the investigations
on poly(tetrafluoroethylene-co-perfluorovinyl ether) (PFA). The nature of the
radicals in PFA, as determined by ESR, was identified to be I and II. However,
G values for radical formation at room temperature and 77 K were found to
be 0.93 and 0.16, respectively [31], which is higher than the values for PTFE
of 0.4 and 0.14 [32].

There is a systematic difference in the degradation behavior of PTFE from
FEP and PFA under ionizing radiation. Both the FEP and PFA contain a pen-
dent group in the form of –CF3 and –OC3F7, respectively. This has direct
bearing on the crystalline structure of the polymer due to impedance in
the chain packing by these substituting groups. The higher amorphous re-
gion in these two polymers would therefore lead to greater radical mobility
and subsequent chain scission as compared to PTFE. The high sensitivity
of PTFE to irradiation is because the radicals have restricted movements
in a highly crystalline matrix and therefore inhibit radical–radical recombi-
nation. Both PFA and FEP undergo side-chain cleavage and therefore have
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more chain end radicals. Recombination of the radicals is restricted and the
chain scission proceeds smoothly, resulting in the formation of a higher num-
ber of radicals. This further reflects into the greater number of carboxyl
groups (transformation of –COF to –COOH), which proceeds in the order
FEP > PFA > PTFE [33].

The irradiation of poly(vinylidene fluoride) (PVDF) brings about little en-
hancement in the crystallinity for irradiation doses of about 100 kGy similar
to poly(ethylene-alt-tetrafluoroethylene) (ETFE). However, beyond 100 kGy,
ETFE shows significant loss in the crystallinity but PVDF remains almost un-
changed [34].

The irradiation of fluoropolymers at elevated temperatures has been ex-
plored for the development of materials with better mechanical proper-
ties [35]. This arises because of the radiation-induced crosslinking of chains
and subsequent higher network density in the resultant polymer [36]. Here,
the irradiation is accomplished at a temperature higher than the melting
point of the polymer. In the molten state, the polymer behaves as an amorph-
ous matrix and the mobility of molecular chains is considerably enhanced.
This promotes the mutual recombination of radicals, i.e., crosslinking involv-
ing chain end radicals and chain alkyl radicals [37].

Irradiation even at a dose as low as 5 kGy brings about a drastic improve-
ment in the tensile strength of PTFE. As the irradiation temperature increases
from room temperature towards below melting, the mechanical strength de-
creases quite rapidly. This is an indication that the chain scission is acceler-
ated with increasing temperature. However, once the irradiation temperature
crosses the melting temperature and reaches beyond 340 ◦C, both modulus
and tensile strength tend to increase considerably, because the polymer enters
into a molten state where the network formation is facilitated. Such behavior
has been observed by other workers under different irradiation doses [38].
It is interesting to note that the crystallinity of the polymer undergoes dras-
tic reduction with the increasing dose. This is an obvious outcome of the
crosslinking of chains, which lowers the molecular mobility and prevents the
chains from undergoing crystallization upon cooling. The crosslinking is so
pronounced that an irradiation dose of 2 MGy leads to complete inhibition of
crystallization in PTFE [32].

The radiation processing of FEP has shown that crosslinking proceeds fa-
vorably at temperatures above its glass transition temperature (70–90 ◦C)
under vacuum. The crosslink density, as measured by the gel content, tends to
increase sharply upon gamma irradiation at around 90 ◦C and reaches values
as high as 35% at 160 ◦C [39]. Based on X-ray photoelectron spectroscopy
(XPS), it has been found that the radical IV (Fig. 2) dominates over other
species under gamma irradiation [40]. This structure originates from the hex-
afluoropropylene units in the copolymer. The combination of structure IV
with I has been proposed to be the most probable route to the crosslinking
reaction. This is further supported by the investigations of Sun et al. [41],
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where structure IV was proposed to be the one involved in the crosslinking
reaction with other radicals. The tetrafluoroethylene component along the
polymer chain still undergoes the crosslinking reaction. Forsythe et al. [42]
have made comprehensive studies on the gamma irradiation-induced changes
in the chemical and mechanical behavior of poly(tetrafluoroethylene-co-
perfluoromethylvinylether). Irradiation at the temperature range 77–195 K
did not result in any gel formation, indicating that the crosslinking is al-
most suppressed at these temperatures. Tensile strength diminished and
elongation increased, suggesting that chain scission is the most appropri-
ate change taking place. The strong evidence in favor of this degradation
comes from the diminishing glass transition temperature in this temperature
range. Crosslinking dominated over chain scission at 263 ◦C and above, where
gelation also approached 80–90% and tensile strength also showed a sharp
increase.

2.4
Grafting Parameters

The design of membranes by radiation grafting covers not only the cova-
lently linked incorporation of an ionic component but also requires perfect
tailor-making to govern how well the molecular architecture, physical prop-
erties, and morphology of the membranes may be controlled. A wide range
of polymers have been grafted, predominantly with styrene or its derivatives,
using different crosslinkers. Tables 1–3 illustrate the common base films,
monomers, and crosslinkers used in radiation-induced grafting [43–46].

Graft polymerization is strongly influenced by irradiation and synthesis
conditions, such as radiation dose, dose rate, monomer concentration, re-
action temperature, pregrafting storage, solvents, and additives (irrespective
of the base matrix). Most of the work on membrane preparation follows the
graft polymerization of styrene onto polymers and the subsequent sulfona-
tion. The pioneering work of Chapiro on radiation-induced grafting led to
interesting observations on the grafting process and opened up the route
for several possibilities in radiochemical grafting of polymer films [47–50].
For most of the polymer–monomer systems, grafting proceeds by the graft-
ing front mechanism, as proposed by Chapiro for grafting into polyethylene
and FEP films [51–53]. The initial grafting takes place at the film surface
and behaves as the grafting front. This grafted layer swells in the reac-
tion medium and further grafting proceeds by the progressive diffusion of
the monomer through this swollen layer and grafting front movement to
the middle of the film. This mechanism of grafting has recently been the
basis of several other investigations on membrane preparation based on
polyethylene, FEP, and PFA films as the base matrix [54–57]. The follow-
ing sections deal with the various parameters and factors that influence
the DG.
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Table 1 Common base polymer films used for the preparation of radiation grafted FC
membranes [43]

Polymer Abbreviation Repeating unit

Perfluorinated polymers

Polytetrafluoroethylene PTFE

Poly(tetrafluoroethylene- FEP
co-hexafluoropropylene)

Poly(tetrafluoroethylene- PFA
co-perfluoropropyl vinyl ether)

Partially fluorinated polymers

Polyvinylidene fluoridea PVDF

Poly(vinylidene fluoride- PVDF-co-HFP
co-hexafluoropropylene)

Poly(ethylene-alt- ETFE
tetrafluoroethylene)

Polyvinyl fluoride PVF

Hydrocarbon polymers

Polyethylene PE

Table 2 Monomers used for the preparation of radiation grafted FC membranes [43]

Styrene α,β,β-Trifluorostyrene (TFS)

α-Methyl- Substituted trifluorostyrene
styrene (AMS) (R = SO2F, Me, MeO, PhO, . . .)
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Table 3 Crosslinkers used as comonomers in the radiation grafting process [43]

Divinyl benzene Bis(vinyl phenyl)ethane Triallylcyanurate
(DVB) (BVPE) (TAC)

2.4.1
Nature of Base Polymer

The chemical nature of the base polymer is an important aspect in membrane
development. There has been preference for the thermally stable fluorinated
polymers over hydrocarbon polymers. Fluorine-containing polymers, charac-
terized by the presence of carbon–fluorine bonds, are widely used as the base
matrices owing to their outstanding chemical and thermal stability, low sur-
face energy, and the ease of modification of various properties by the grafting
method. Perfluorinated polymers and partially fluorinated polymers combin-
ing hydrocarbon and fluorocarbon structures are excellent candidates as base
polymers. For instance, fluorinated FEP has drawn wide attention due to its
reasonably good radiation stability [58].

The membranes, developed at the Paul Scherer Institut (PSI, Switzerland)
for fuel cell applications, were initially based on FEP [59–61]. The use of
ETFE as base material was revisited recently in this laboratory since ETFE
is readily available in higher molecular weights and has desirable mechani-
cal properties such as breaking strength and flexibility, which are enhanced
with increasing molecular weight [62]. ETFE contains alternating structural
units of ethylene and tetrafluoroethylene that confers a unique combination
of properties imparted from both fluorocarbon and hydrocarbon polymers.
Moreover, undesirable chain scission reactions occurring during preirradia-
tion grafting can be minimized by using ETFE, especially in combination with
electron beam irradiation under inert atmosphere [63].

The base polymer film type and its properties (such as film thickness, ex-
tent of orientation, and molar mass) have significant effect on both the degree
of grafting and resultant membrane properties [64, 65]. Walsby et al. [65] have
reported that under identical conditions, grafting of styrene onto different
base polymers yielded different graft levels. The authors indicated that graft
levels were 5% for PTFE, 56% for PVDF, 28% for FEP, and 62% for ETFE. It
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seems that the influence of the base polymer matrix on grafting is a complex
scenario. The differences obtained in graft level may be due to the different
radical concentrations, different structures of the radical centers, and differ-
ent degrees of crystallinity. Since the grafting essentially takes place in the
amorphous region, the high crystallinity of the polymer would provide lesser
radicals in the amorphous region accompanied by low monomer diffusion
for subsequent graft initiation and propagation. The glass transition tempera-
ture (Tg) may also contribute in terms of the mobility of the macromolecular
chains in the amorphous region. If the grafting is carried out at a tempera-
ture higher than the Tg, the enhanced mobility of chains would favor mutual
recombination of growing grafted chains, leading to the low graft levels [65].
The radical concentration in PTFE tends to be two orders of magnitude lower
than in polyethylene and ETFE for an irradiation dose of 100 kGy and may
be one of the reasons for low graft levels [66]. ETFE films are found to yield
higher graft levels than that of FEP under identical grafting conditions. This
behavior may be attributed to the greater number of reactive sites available
for ETFE since more radicals are expected to be formed per kGy of radiation
dose (lower bond strength of C–H than C–C and C–F) [67, 68].

Increasing the molecular weight of the base polymer film causes a decrease
in the DG. Melt flow index (MFI) measurements are especially useful for ob-
taining both qualitative and quantitative information about the molecular
weight of polymers, chain scission, and crosslinking. It was reported that MFI
increases due to chain scission upon ETFE irradiation in air. Also, ETFE films
tend to undergo crosslinking during irradiation at room temperature under
inert atmosphere [64]. It is also observed that higher irradiation doses are
required for thinner base films than for thicker ones to achieve comparable
DG under identical grafting conditions. This may be attributed to the greater
extent of orientation of polymeric chains in the machine direction in thin-
ner films [63]. The extent of orientation has a significant effect on polymer
permeability, which decreases as the orientation increases [64]. A negative de-
pendence of grafting rate on film thickness for the grafting of acrylic acid
onto PTFE has been observed [69]. However, other investigations have shown
that the film thickness has no significant effect on grafting yield [70].

Another interesting development in membrane fabrication has been the
use of porous base films [71]. The grafting of a monomer and subsequent
sulfonation still leads to porosity in the membrane bulk. However, this mem-
brane may be densified by impregnating it to substantially fill the porosity,
or the porosity may be collapsed by the application of pressure and heat. The
heating may be carried out to at least a melt flow temperature of the film but
at a lower melting temperature (Tm) than grafted side chains.

The pregraft storage of irradiated films is an important aspect of mem-
brane preparation. It has been observed that fluorinated polymers retain
their grafting ability for a longer period, irrespective of their chemical struc-
ture [47, 72]. Horsfall et al. [73] have shown that irradiated ETFE and PVDF
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Fig. 3 Effect of low temperature storage on degree of grafting for the preirradiation graft-
ing method [73]

films remain active even after more than a year of storage (Fig. 3). The storage
of films may be accomplished at a low temperature of – 18 ◦C or even less. The
behavior of polyethylene films has shown to be quite different as they undergo
considerable loss in the DG with storage [52]. This opens up an interesting as-
pect in the preirradiation grafting of monomers onto fluorinated polymers,
where irradiation may be carried out once and the resultant films may be
stored for subsequent membrane fabrication. It was reported that the storage
of irradiated FEP films at – 60 ◦C in the dark for 118 days had no significant
effect on grafting [72].

2.4.2
Irradiation Dose and Dose Rate

The influence of the irradiation dose and dose rate on the grafting process has
been the subject of detailed investigations. As the radiation dose increases,
the number of radical sites generated in the grafting system also increases.
This has been observed in the simultaneous radiation grafting of styrene
into PTFE films, where the grafting increases almost linearly with the in-
crease in the radiation dose and reasonably high graft levels up to 70% were
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achieved [74, 75]. However, higher irradiation doses are not preferred due to
the deterioration of mechanical properties [76].

Rager [77] has investigated the influence of irradiation dose on DG for
grafting of styrene onto preirradiated FEP films (Fig. 4). Although DG in-
creases as dose increases, it becomes more difficult to obtain higher degrees
of grafting through a further increase in irradiation dose [77].

Chapiro [47, 48] demonstrated for the first time that the grafting yield in-
creases with the total irradiation dose and is independent of the dose rate at
low dose rates for simultaneous grafting of methyl methacrylate and styrene
onto PTFE. It was emphasized that at low dose rates, the rate of polymer-
ization was slow and grafting was diffusion controlled, whereas at high dose
rates, the higher rate of polymerization exceeded the rate of diffusion and
grafting was limited to the surface [47, 48]. As a matter of fact, the final
DG increases with increasing dose and with decreasing dose rate for styrene
grafting into PFA and PP [12]. It is important to note that a more efficient uti-
lization of radicals is followed in simultaneous radiation grafting as compared
to the preirradiation method. For the grafting of styrene onto Teflon–FEP
films, a graft level of 40–50% is achieved using a radiation dose of 15 kGy in
the simultaneous grafting method as compared to 100 kGy for similar graft
levels in the preirradiation grafting method using gamma rays [72]. A signifi-
cant fraction of radicals are deactivated during the course of preirradiation,
and the polymer requires optimum activation by irradiation at additional
doses to accomplish the high DG.

Fig. 4 Grafting kinetics as a function of preirradiation dose (grafting conditions: FEP
25 µm, 50% monomer concentration in isopropanol, 10% DVB, 60 ◦C) [76]
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It is observed that gamma and electron beam irradiation lead to identi-
cal degrees of grafting in FEP-g-polyacrylic acid systems [53]. However, the
grafting of acrylic acid into polyethylene films shows much higher grafting
under gamma irradiation than under electron beam irradiation [52]. The dif-
ference in the behavior of FEP and polyethylene films lies in the ability of
the polyethylene film to hydroperoxidize under the influence of irradiation.
Moreover, gamma irradiation is carried out for a longer period than electron
beam irradiation. Therefore, the hydroperoxide build-up is much higher in
gamma irradiated films and offers much higher graft levels than are achieved
in electron beam. Certainly, the influence of crystallinity and other factors
needs to be considered, which will be over and above the influence of the
chemistry of the polymers. This is what has been observed in the preirradi-
ation grafting of styrene onto PVDF, where the graft levels are two to four
times higher than for poly(vinylidene fluoride-co-hexafluoropropylene) [65].
Looking at the composition of this copolymer, there is only 7% hexafluoro-
propylene present in the copolymer matrix, but it diminishes the grafting
drastically. Hexafluoropropylene not only enhances the plasticization of the
matrix but also interferes with the crystallization process and results in low
crystallinity. As a result, the mobility of chains is enhanced and radical–
radical crosslinking dominates over the grafting process.

The radiation dose rate has a profound influence on the equilibrium graft-
ing of styrene onto various polymers, both in the vapor phase and in solution,
using the simultaneous grafting method [75, 78, 79]. The initial rate of graft-
ing in such systems increases with the increase in the radiation dose. This
is the outcome of the efficient utilization of radicals in graft initiation and
subsequent chain propagation. It needs to be mentioned here that in the ini-
tial stages, homopolymer formation is very limited and the grafting proceeds
smoothly with time. Owing to the faster homopolymerization, the graft-
ing at higher dose rates reaches saturation much faster than at lower dose
rates. However, for a constant radiation dose, the higher dose rate results
in low graft levels and, maybe because the radical concentration is so high,
the radical–radical recombination becomes the dominant reaction [75, 78].
Under such conditions, radiolysis reaches equilibrium with radical deactiva-
tion and the radical concentration does not increase further with a further in-
crease in the dose rate [31]. Moreover, the higher rate of homopolymerization
follows at higher dose rate and leads to an increase in viscosity and a deple-
tion in monomer content. As a result, the monomer availability through the
grafted layers is reduced [79–81].

The order of dependence, determined as 0.64 for styrene grafting into
FEP [72], 0.58 for grafting of acrylic acid into FEP [82], and 0.53 for styrene–
acrylic acid [83], is in agreement with the theoretical value of 0.5 for free
radical polymerization. Momose et al. [70] reported that for the grafting of
α,β,β-trifluorostyrene (TFS) into ETFE, the grafting rate and final percent
grafting increase with increasing preirradiation dose, with the dose exponent
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of 0.3. The low dependence of grafting rate on the preirradiation dose may
be attributed to the decay of trapped radicals due to the increased tempera-
ture during irradiation, radical decay during storage, or decay due to radical
recombination. A similar trend has been reported for the radiation-induced
grafting of acrylic acid onto PTFE [69, 84].

2.4.3
Monomer Concentration

Monomer concentration is the most dominant of the factors that significantly
influence the grafting process. As long as the monomer accessibility to the
propagating sites is facilitated, the grafting proceeds smoothly. This is the rea-
son that an increase in the monomer concentration leads to an increase in
the DG, which is observed for both the simultaneous and preirradiation graft-
ing systems. The increase in grafting with increasing monomer concentration
has been observed for the grafting of styrene and styrene–acrylic acid mix-
ture into FEP films [55, 72]. Both the initial rate of grafting and equilibrium
DG increase with the styrene concentration in the range of 20–100% [51].
This suggests that the grafting proceeds smoothly with the regular diffusion
of monomer within the film. In contrast to the higher monomer dependence
(1.9) observed for styrene grafting into FEP previously [72], a first-order de-
pendence of the rate of grafting on the monomer concentration indicates that
classical free radical polymerization kinetics operate in the system. However,
the complexity arising from the extensive homopolymerization during the
grafting may hinder monomer diffusion to the radical sites and may lead
to diminishing grafting. This may lead to the maxima at specific monomer
concentrations, beyond which the grafting would decrease rapidly. Liang
et al. [85] have observed a maximum in the simultaneous radiation grafting
of styrene into PTFE films, where the peak was observed at 70% monomer
concentration in the grafting medium (Fig. 5).

Our group studied the influence of monomer concentration on styrene
grafting into ETFE, using isoproponal/water as the solvent [80]. We found
that the DG increases dramatically with an increase in the styrene concen-
tration, until it reaches a maximum at 20% (v/v) styrene for reaction times
above 2 h, and then decreases sharply as the concentration further increases.
For grafting times below 2 h, this maximum is shifted to 50% (v/v) styrene.
The increase in graft level was attributed to the increase in styrene diffusion
and its concentration in the grafting layers. We determined the order depen-
dence of the grafting rate on monomer concentration as 1.5. Nasef et al. [81]
reported similar results for styrene grafting into ETFE in methanol as solvent.
Moreover, these authors determined that the initial rate of grafting was sig-
nificantly dependent on styrene concentration with an exponent as high as
2.0, which is not in agreement with a first-order dependence of free radical
polymerization.
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Fig. 5 Variation of DG with monomer concentration (grafting conditions: 20 kGy dose,
110 Gy min–1 dose rate, dichloromethane as the solvent, 50 µm film, ambient temperature,
nitrogen atmosphere) [85]

It is important to see that a similar trend has been observed for the grafting
of styrene into all three (PTFE, FEP, and PFA) films under identical condi-
tions [75, 78, 86]. The DG increased dramatically with the increase in styrene
concentration until it reached a maximum, and then decreased sharply as
the concentration was increased further [74]. The authors emphasized that
the DG of styrene in PTFE depends on both the number of radicals formed
and the diffusion of styrene through the polymer matrix, and on its con-
centration in the grafting layers. Therefore, the increase in the DG in this
system may be attributed to the increase in styrene diffusion and its con-
centration in the grafting layers. At very high concentrations of styrene,
homopolymer formation was enhanced and the diffusion of styrene across
the viscous medium was hindered. These studies are also supported by Car-
dona et al. [12] who observed that with increasing monomer concentration
the DG reached a maximum and then decreased for styrene grafting into PFA
and polypropylene.

The location of the maxima will be somewhat influenced by the nature
of the solvent used in the reaction medium [56]. The initial rate of grafting
should be largely dependent on the diffusibility of the monomer into the ma-
trix and the grafting solvent must properly swell the grafted zone and make
monomer diffusion possible. Such behavior has been proposed to be associ-
ated with styrene diffusion and its concentration within the grafted layers.
It is stated that an increase in the monomer concentration up to 60% is ac-
companied by higher monomer availability within the bulk matrix, beyond
which extensive homopolymerization leads to the depletion of monomer in
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the grafting medium and subsequent reduction of styrene diffusion into the
film. The diffusion phenomenon has also been considered to be a decisive
factor in the grafting of styrene into ETFE [87]. The grafting of styrene with
acrylonitrile has been investigated recently [88]. It was observed that the
graft yield is considerably enhanced by the addition of acrylonitrile as the
comonomer.

Our patent search of last 5 years shows that although most of the stud-
ies have been directed to the use of styrene-based monomers [89–92]. Some
workers have tried to use substituted styrenes such as TFS to graft onto
FEP [93–95]. The DG in fact remained lower than that observed for styrene
grafting [93]. Momose et al. [96] has been granted a patent on the devel-
opment of TFS-based graft copolymer membranes using both low density
polyethylene and ETFE as the base polymers. Other patents describe graft-
ing of TFS and trifluorovinyl naphthalenes onto ETFE film, which facili-
tates the introduction of more than one sulfonic acid group per monomer
unit [97–102]. Considerably higher graft levels of ∼ 80% and ∼ 44% have
been achieved for TFS and p-methyl trifluorostyrene, respectively [100].
A more recent patent describes the influence of the grafting mixture al-
cohol/water on the grafting of TFS derivatives [103]. Furthermore, a novel
monomer combination, namely α-methylstyrene/methacrylonitrile, as graft-
ing component is discussed in [104].

2.4.4
Grafting Temperature

The reaction temperature has a significant influence on the DG, irrespective
of the nature of the polymer and the monomer. The general observation has
been a decrease in the equilibrium DG as the reaction temperature increases.
On the other hand, the initial rate of grafting increases with increasing tem-
perature [72]. As a matter of fact, grafting is controlled by a cumulative effect
of the monomer diffusion within the polymer bulk, termination of the grow-
ing polymer chains, and the deactivation of the primary radicals.

As the reaction temperature increases, the monomer diffusivity within the
bulk also increases. This enhances the monomer accessibility to the graft-
ing sites within the polymer bulk. As a result, the rate of initiation and
propagation is enhanced. This is the reason that the initial rate of grafting
increases with the increasing temperature. The other aspect of grafting is
that the grafted zone remains swollen in the grafting medium, which leads
to high mobility of the growing chains within the matrix. Therefore, termi-
nation of the two growing chains by mutual combination becomes dominant
at higher temperatures. At the same time, the primary radical termination
may also accelerate by the time the monomer reaches their vicinity. In spite
of the higher rate of initial grafting, the final DG would decrease. A simi-
lar tendency has been reported for the grafting of styrene onto ETFE-based
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Fig. 6 Variation of DG with time at various temperatures (grafting conditions: 60 kGy
dose, 60% monomer concentration, 50 µm film) [72]

films [64, 80, 81] and the grafting of TFS onto ETFE, FEP, PTFE, PFA, and
LDPE films [105].

These observations are well in line with those of Rager [77]. The graft-
ing studies were carried out at 50–85 ◦C and showed that the initial rate of
grafting increases with the grafting temperature.

It may be mentioned that the Tg plays an important role in the graft-
ing process. If Tg is lower than the grafting temperature, the mobility of
chains is very high. Under such circumstances, the probability of primary
radical termination becomes dominant. The final DG as a result may de-
crease. However, it may be overshadowed by the faster rate of chain initiation
and higher monomer diffusivity at higher temperatures [72], as shown in
Fig. 6. As a matter of fact, a sharp increase in the rate of grafting may be
envisioned at the Tg of the specific polymer.

2.4.5
Grafting Medium

The graft copolymerization reaction is carried out by bringing the acti-
vated base polymer film into contact with the monomer in liquid or vapor
form. The use of solvents in radiation grafting enhances the accessibility of
monomer to the grafting sites due to the ability of the solvent to swell the base
polymer. In poor swelling solvents, surface grafting occurs due to the slow
down in monomer diffusion within the polymer. However, in good solvents,
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bulk grafting is highly favored and homogenous grafting is obtained across
the film thickness.

The instantaneous swelling of the grafted matrix within the reaction
medium is an important factor that governs the grafting process. With the
progression of grafting, the polymer film is continuously being transformed
into a grafted structure. It is, therefore, the swelling of the grafted matrix in
the reaction medium of specific monomer composition that influences the
monomer diffusion within the film. The swelling at 10 and 60% monomer
concentration in the medium may be different than at higher concentrations
and may, therefore, be reflected in the low graft levels, as observed in Fig. 5.
This is further supported by the grafting of acrylic acid into polyethylene
films, where a similar maximum was observed at 25% monomer concentra-
tion [51]. It was observed that the swelling of the grafted film is considerably
reduced in a grafting medium containing monomer at higher than 25%,
which diminishes monomer diffusion and hence the availability to the prop-
agating chain within the bulk.

The nature of the solvent in the grafting medium is an interesting aspect
of achieving efficient graft polymerization. The type of solvent and the com-
position of the monomer/solvent mixture may influence the grafting kinetics,
the length of grafted chains, and polymer microstructure. Benzene, toluene,
dichloromethane, and alcohols (methanol, ethanol, and propanol) have been
employed as solvents for radiation grafting of styrene and styrene deriva-
tives. It seems that a combination of the polarity (solubility parameter) and
chain transfer constant of the solvent plays a major role in graft propaga-
tion. The use of dichloromethane has been observed to produce higher graft
levels over benzene and methanol [56]. The radical yield in different sol-
vent mediums has been established to be the reason behind such grafting
behavior. The radical yields of irradiated styrene solutions in methanol, cy-
clohexane, and benzene have the order methanol < cyclohexane < benzene.
The speculations of Nasef [78] and Dargaville et al. [13, 106] about the effect
of viscosity changes in the grafting medium (due to the insolubility of poly-
styrene in methanol as medium) on decreasing the graft levels do not seem
realistic. It may, in fact, be the lower swelling of the polystyrene-grafted ma-
trix in methanol/styrene mixture as the medium that lowers the monomer
diffusion within the film and results in a low DG. In such systems, the swelling
of the original polymer matrix is not as important as that of the grafted ma-
trix in the solvent medium [107]. This is achieved by using a solvent for the
grafted component in combination with the monomer. The propagating graft
chains become solvated in the surrounding medium. Since these chains are
part of the matrix, the whole matrix exerts swelling. As the grafting proceeds,
more polystyrene grafts are incorporated, leading to higher swelling of the
matrix, which allows more and more monomer to diffuse into the polymer
bulk for the propagation reaction. It is, therefore, the perfect matching of
the solubility parameter of the solvent with the grafted polymer domain that
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would influence the swelling of the matrix during the grafting process. Ben-
zene has a solubility parameter (18.6) much closer to that of styrene (19) as
compared to dichloromethane (17.6) and methanol (29.7) [108]. The swelling
of the polymer, therefore, would be higher in a solvent where the solubility
parameters of the two are closer to each other. This would provide the least
swelling in methanol but higher swelling of the grafted matrix in benzene
medium for styrene-grafted films.

Cardona et al. [56] investigated the correlation of the efficiency of
the grafting process with solubility parameters for polystyrene in var-
ious solvents. The authors reported that for grafting of styrene onto
PFA in dichloromethane, the DG is higher than that of styrene in ben-
zene and methanol. The chain transfer constants (0.15, 0.2, and 0.296 for
dichloromethane, benzene, and methanol, respectively) were important pa-
rameters in this context. Low graft levels are obtained with solvents having
a high chain transfer constant, since the growing chain will be quickly ter-
minated, whereas solvents with low chain transfer constants enhance the
propagation step and lead to higher grafting yields. The influence of sol-
vent viscosity also plays an important role in surface graft–polymerization
reactions [109].

An additional factor that originates from the use of a non-solvent medium,
such as methanol, is the precipitation of the propagating chains and hin-
drance of diffusion of the monomer to the internal layers within the film,
resulting in a decrease of the grafting [56]. However, recent investigations
on the grafting of styrene onto PVDF and FEP films have exploited the use
of alcohols as non-solvent for achieving higher graft levels [76, 107]. The
pre-irradiation grafting of styrene/divinyl benzene (DVB) onto FEP films is
accelerated in alcohols in the order methanol < ethanol < propanol. A four-
fold increase in grafting kinetics was observed when toluene was replaced by
isopropanol and has been attributed to the Trommsdorff effect, which can
occur in chain polymerization when the increasing viscosity limits the rate of
termination because of diffusion limitations operating in the system [110].

This certainly opens up an interesting route for achieving membranes
with reasonable DG for relatively lower irradiation doses, which might be
beneficial in retaining the mechanical properties of membranes to a large ex-
tent. Walsby et al. [111] reported the grafting of styrene into PVDF in both
propanol and toluene, where not only the grafting kinetics but also the struc-
tural properties of the grafted films were dependent on the type of solvent.
Higher grafting rates and saturation DGs were obtained in a propanol-based
system, which was unable to swell the polystyrene grafts. On the other hand,
the grafting in toluene yielded more homogenous films with better surface
aspects and mechanical properties. Reduced elongation at break and much
rougher surface with large cavities were observed for the films grafted in
propanol. The authors reported that the film was swollen very little by the
grafting solution, and that propanol served as a diluent without any contri-
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bution to the swelling of the polystyrene grafts. The authors attributed the
higher grafting rate in propanol to the higher concentration of monomer in
the reaction zone, whereas the higher saturation DG was due to the higher
viscosity of the grafted zone, which prevents growing chain termination.

Some base polymers such as PTFE do not swell well in any common sol-
vent. For this reason, the grafting reaction is performed in aqueous medium.
Hegazy et al. [112] investigated the effect of various solvents on the radiation
grafting of methacrylic acid onto PTFE film. The authors demonstrated that
distilled water and methanol/water mixture (30/70 wt. %) are the most suit-
able solvents since the mixture swells the grafted regions. The increase in DG
upon addition of water to isoproponal was emphasized for styrene grafting
into FEP [76].

The radiation grafting of TFS onto various fluorine-containing base poly-
mers, such as LDPE, ETFE, PFA, FEP, and PTFE has been accomplished by the
pre-irradiation method [105]. A proper examination of the swelling proper-
ties and solubility parameters of these polymer films in pure TFS showed that
LDPE yielded the highest, and PTFE led to the lowest graft levels. This is be-
cause of the fact that the sorption of liquid in polymer depends on the affinity
between the liquid and the polymer film.

2.4.6
Additives

The influence of additives such as acids to the grafting systems has been ex-
plored for achieving higher graft levels [78]. The addition of sulfuric acid has
been found to be effective in enhancing the DG of acrylic acid onto FEP and
polyethylene films [18, 21]. Styrene grafting onto polyethylene films has also
been observed to increase significantly in the presence of acids [113, 114].
However, there are contradicting reports where no influence of organic and
inorganic acids was observed on the grafting of styrene into PTFE, PFA, and
FEP films [78]. Different hypotheses have been postulated for the enhance-
ment of the grafting but until today an exact mechanism of grafting in such
systems has not been proposed.

2.5
Crosslinking

Crosslinkers are used in conjunction with the monomer to achieve certain de-
sirable properties in the grafted membranes. The use of a crosslinker in the
grafting medium has been investigated by different workers to obtain mem-
branes that have improved stability in fuel cells [72, 115]. Lower graft levels
are achieved as the crosslinker content in the grafting medium increases.
This may be because the grafting starts at the film surface. In the presence
of crosslinker, the very first polystyrene-grafted chains become crosslinked.
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As a result, the mobility of chains is drastically lowered as compared to the
crosslinker-free grafting reaction. Consequently, monomer diffusion to the
grafting sites within the films is reduced. The higher the crosslinker content,
the greater will be the crosslinking density of the grafted chains, which will
hinder the monomer diffusion more and more, leading to comparatively low
DG. However, it has been observed that crosslinkers may increase or decrease
the grafting yield depending on their concentration [13]. At lower crosslinker
concentration, the increased DG was attributed to enhanced branching re-
actions. At higher crosslinker concentration, on the other hand, a network
structure was formed, which caused suppression in the swelling of the graft
and an increase in viscosity of the grafting solution. This further resulted in
a decrease of diffusion and in availability of the monomer and, consequently,
the grafting yield was lower. These observations are well supported by the in-
vestigations of Rager [77] on styrene grafting onto FEP films. There was an
initial rise in graft level for low a level of DVB content in the grafting medium
and therefore the grafting decreased considerably. This has been attributed to
the polyfunctional nature of the crosslinker.

The addition of crosslinking agents affects the kinetics of the grafting reac-
tion. The addition of DVB decreased the initial rate of grafting and the limit-
ing DG [116]. This is evident from the lower rates of grafting in crosslinked
systems than in uncrosslinked ones. The rate of grafting for a crosslinker-
free FEP–polystyrene system decreases from 3.6% per hour down to 2.2% and
1.4% per hour for 2 and 4% DVB content, respectively (Fig. 7). However, much
higher values have been reported for the grafting of styrene/DVB onto PFA
films using simultaneous radiation grafting, which may be attributed to the
difference in the base matrix and the radiation dose rate. It was reported that
the addition of DVB caused a significant decrease in the DG as a function
of the DVB concentration for styrene grafting into PFA [115] and ETFE base
films [117, 118].

The graft variation with the N,N,-methylene-bis-acrylamide as the cross-
linker for grafting onto ETFE and FEP is quite different [119]. The grafting
in fact did not show any specific trend with the increase in the crosslinker
content.

The concept of double crosslinking has been examined previously by
the use of DVB and triallylcyanurate (TAC) together for radiation grafting
of styrene into FEP [72, 120, 121]. It was reported that TAC yielded im-
proved mechanical properties and ionic conductivity [121]. Although it was
found that TAC had a favorable promoting influence on the grafting kinet-
ics, spectroscopic measurements failed to positively indicate that TAC was
incorporated into grafted films and membranes [122]. Later, it was deter-
mined that TAC acted primarily as a graft-promoting additive rather than as
a crosslinker [123].

The degree of crosslinking in the grafted film was found to be different
from the composition of the grafting solution for FEP-based radiation grafted
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Fig. 7 Variation of DG with reaction time for different crosslinker contents [116]

films due to the different reactivity and diffusion coefficients of styrene and
DVB in the film during the grafting process [124, 125]. It was observed that
an increase in the degree of crosslinking decreases the membrane thickness,
which means that crosslinking increases the structural density of the mem-
branes. Moreover, the mobility of the protons in the membrane is reduced
with increasing degree of crosslinking due to decreasing water uptake [125–
127]. Moreover, Brack et al. [124] and Ben youcef et al. [118] reported that
radiation grafted films are more highly crosslinked in their near-surface re-
gions and thinner films are more extensively crosslinked.

Originating from the concept of crosslinking of fluoropolymers under ir-
radiation at elevated temperature, grafting has been accomplished onto the
crosslinked matrix so that the grafting-induced deterioration of mechani-
cal properties may be compensated. As discussed in the preceding section,
the crosslinking of PTFE is achieved in the molten state at a temperature of
340 ◦C. Surprisingly, the precrosslinked films (prepared under gamma irradi-
ation doses of 60–320 kGy), lead to much higher polystyrene graft levels than
the virgin one as given in Fig. 8 [128]. Such behavior is the result of two dif-
ferent factors operating in the system: (i) the availability of the amorphous
area, and (ii) the radical site generation. It has been an established fact that
grafting takes place predominantly within the amorphous region and on the
crystal surfaces [127, 129]. The crystalline regions are impermeable structures
and do not allow monomer diffusion and subsequent grafting with the rad-
icals trapped within the crystallites [130]. Therefore, any process that leads
to a decrease in the crystallinity would be expected to enhance the grafting
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Fig. 8 Variation of DG with reaction time for styrene grafting into the PTFE films
crosslinked with gamma rays at different doses (15 kGy preirradiation dose for the graft-
ing reaction) [128]

reaction. The irradiation of PTFE is carried out in the molten state at a tem-
perature of 340 ◦C where the crystallites are almost completely lost and the
matrix behaves like the amorphous one. This state is achieved at irradiation at
a high dose of 2 MGy, where the enthalpy of fusion in a differential scanning
calorimetry reaches zero [131]. The irradiation at this stage would be favor-
able for the crosslinking reaction, providing a network structure due to the
high mobility of chains. A crosslinked structure is more adapted to radical
generation and has been found to have higher G values for the trapped free
radicals than an uncrosslinked structure [32]. The radicals produced during
the exposure of this crosslinked matrix would be more stable due to the re-
duced mobility of chains and would be available for graft initiation in contact
with the monomer.

The precrosslinking of a polymer is an innovative approach to restoring
mechanical strength. However, a proper monitoring of the precrosslinking
dose has to be carried out to achieve reasonable graft levels. It is obvious
that a precrosslinking dose that is too high may not bring about high graft
levels [132]. It is observed that grafting enhances significantly with increas-
ing dose but only up to a range of 50–500 kGy. Any further dose increase
leads to loss in the grafting levels and very little grafting is obtained for film
crosslinked at a dose of 2 MGy. This is because of the fact that the graft-
ing ability of the polymer matrix is severely affected. The matrix is highly
crosslinked to such an extent that the mobility of the molecular chains is sup-
pressed. A crosslinked matrix may lead to lower diffusion of the monomer
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within the matrix and hence would have an adverse effect on graft propaga-
tion. However, it seems that the availability of the more amorphous region,
along with the higher availability of radical sites, overpowers the impact of
slow monomer diffusion. The temperature also has significant impact on the
grafting reaction. An increase in the temperature brings about lower graft
levels for films crosslinked at different doses. Here, the mobility of the grow-
ing chains at higher temperature increases to an extent that the bimolecular
termination of chains is facilitated. The termination of the primary radicals
would also be a dominant reaction and would contribute to the lower graft
levels.

2.6
Sulfonation

Sulfonation is the final step for the preparation of polystyrene-based mem-
branes for fuel cell applications. In this reaction a sulfonic acid group is
added to the aromatic ring by electrophilic substitution. Sulfonation can be
performed by several agents such as sulfuric acid, sulfur trioxide, sulfonyl
chloride, acetyl sulfate, and chlorosulfonic acid.

Sulfonation conditions have a significant effect on membrane properties
including ion exchange capacity, water uptake, and conductivity. Walsby
et al. [111] demonstrated that the reaction time, concentration of the sulfonat-
ing agent, and reaction temperature have a considerable effect on sulfonation
with chlorosulfonic acid. The authors reported that the sulfonation reaction
proceeds by a front mechanism, that the grafts at the surface are sulfonated
first, and that the rate of reaction depends on the diffusion of sulfonating
agent within the membrane. An increase in the concentration of the sulfonat-
ing agent and in reaction temperature facilitates the reaction; however, side
reactions, which cause a decrease in ion exchange capacity (IEC), water up-
take, and proton conductivity, are favored at these conditions. This indicates
that, although the use of harsher sulfonation conditions offers advantages in
terms of speed of the sulfonation process and oxidative stability, the IEC,
water uptake, and proton conductivity are decreased and the membrane be-
comes more brittle. Paronen et al. [6] emphasized that the rate of sulfonation
increased with short sulfonation time, because with longer sulfonation time
the hydrophilicity in the sulfonated regions governs the rate of sulfonation.

Sulfonation of FEP- and ETFE-based grafted films at PSI was performed by
using 30% chlorosulfonic acid in dichloromethane (at 95 ◦C, 5 h) and mem-
branes with reasonably good sulfonic acid content have been observed. Sul-
fonation conditions almost identical to those used at PSI have been used by
others for the sulfonation of PFA-g-polystyrene films, i.e., a mixture of chloro-
sulfonic acid and 1,1,2,2-tetrachloroethane (30 : 70 v/v, 90 ◦C, 5 h) [133].
Phadnis et al. [83] performed the sulfonation of styrene–acrylic acid grafted
FEP films in concentrated sulfuric acid (at room temperature). Concentrated
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sulfuric acid and refluxing under nitrogen (at 95 ◦C) has been used for PVDF-
g-polystyrene films [134]. The attempts to sulfonate PVDF-g-polystyrene
films in concentrated sulfuric acid at temperatures between 21 and 95 ◦C
and in acetyl sulfate/dichloroethane solutions at 50 ◦C yielded low degrees of
sulfonation, and the sulfonation was mainly restricted to the surface [111].
This may be due to the insufficient reactivity of these sulfonating agents. In
addition, sulfuric acid may not be able to penetrate into the hydrophobic
matrix.

The number of sulfonic acid groups in the membrane increases with the
increase in the DG. At higher styrene concentrations more benzene rings
are in contact with sulfonic acid groups, which results in more sulfonic acid
groups in the membrane. However, the efficiency of the sulfonation reaction
depends to large extent on whether or not the membrane is grafted through
its thickness [111]. If the samples contained a core of ungrafted parts, sul-
fonation was incomplete at room temperature due to insufficient swelling of
the samples and the difficulty of diffusion of the sulfonating agent. It was
observed that full sulfonation of surface grafted samples can be achieved at
higher temperatures.

3
Characterization and Structure of Grafted Films and Membranes

The characterization of membranes is essential for correlating their perform-
ance in fuel cells. It is the interface of the membrane that interacts with
the electrode and hence a proper surface morphology may in fact improve
the performance of the membrane electrode assembly. Membrane prepar-
ation involves the graft polymerization of a monomer, usually styrene, and
subsequent sulfonation of the grafted matrix. This transforms a hydropho-
bic fluorinated structure into a hydrophilic ion exchange matrix. Therefore,
the polymer film undergoes drastic modification in terms of the physico-
chemical properties and morphological nature, depending on the irradiation,
grafting, and sulfonation conditions.

3.1
Graft Mapping

The most important requirement of the membrane is the homogeneous dis-
tribution of grafts across the membrane matrix. X-ray microprobe analysis
(XMA) has been an effective way to monitor the graft distribution within the
membrane matrix. The X-ray fluorescence for sulfur may be monitored across
the membrane thickness and provides useful information about the distri-
bution of the sulfonic acid groups and, hence, of the grafts across the ma-
trix [127, 135, 136]. It was observed that the grafted phase was initially con-
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centrated at the film surface. The low graft levels of ∼ 3% film shows a very
high concentration of sulfur only on the surface, as presented in Fig. 9 [127].
The presence of sulfur in the middle of the membrane may be seen with
a further increase in the DG. The two zones from both sides approach each
other towards the middle and subsequently a homogeneous distribution of
sulfur, or in other words polystyrene grafts, is achieved. This indicates that
the grafting is a time-dependent process and that the homogeneous structure
is possible only at a specific graft level and beyond a specified grafting time,
irrespective of the grafting method used to produce the membranes. For in-
stance, a homogenous distribution of grafts was achieved at DG higher than
20% for FEP-based films [87, 116].

This further substantiated the idea that grafting proceeds through a graft-
ing front mechanism and that DG above 30–35% is required for two grafting
fronts to meet and form a network for proton conduction [137]. It is also ob-
served that an inhomogeneity, in the form of bubbles on the membrane sur-
face, is created after sulfonation of grafted films with graft levels below 11%.
The membrane inhomogeneity arises due to the presence of hydrophilic sul-
fonated polystyrene chains in the surface layer of the hydrophobic perfluor-
inated FEP matrix [138].

It was observed that the addition of crosslinker (2–4% DVB) to styrene
considerably affected the homogeneity profile behavior [116]. The distri-
bution became practically homogenous across the whole width of the film
and the homogeneity increased at 4% DVB [116, 139]. That behavior was at-
tributed to the decreased rate of diffusion in the grafted zone near the surface,
an increase in the rate of termination of growing chains, and a decrease in the
concentration of styrene in surface layers [116]. The observations for the TFS-

Fig. 9 Distribution of sulfur as determined by microprobe measurements in the transverse
plane of FEP-based membranes with different DG: a 3.1%, b 5.9%, c 13.6%, d 27% [127]
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grafted systems have been found to be completely different. It was observed
that for TFS grafted onto PTFE and ETFE, although the graft chain distribu-
tion is almost constant over the range of film thickness for ETFE-based films,
the grafted PTFE exhibited two peaks (XMA profile) located ∼ 10 µm inside
the film surface. That was attributed to a better monomer diffusivity in an
ETFE base film than in a PTFE base film [105].

Micro-Raman mapping is another interesting tool for analyzing the depth
profile of the grafted component within the membrane matrix [12, 57, 79].
The ratio of the intensity of the Raman peaks associated with the aromatic
band in polystyrene at 1601 cm–1 and in the fluorinated matrix, such as
PFA at 996 cm–1 at the surface and along the cross-section, provides infor-
mation about the distribution of the grafts. The graft penetration tends to
be higher at higher radiation doses. Likewise, the vapor phase grafting has
been observed to remain confined to the surface layers only [57, 79]. Hietala
et al. [140] observed that for polystyrene-grafted PVDF films, although poly-
styrene distribution was homogenous on the surface at high graft levels, the
surface became quite heterogeneous at low graft levels.

Hegazy et al. investigated the cross-sections of the poly(acrylic acid)-
grafted FEP films [141] and PTFE films [142] by X-ray microscopy. It was
observed that the monomer was limited to the surface at low graft levels.
However, it penetrates the entire film and homogenous grafting throughout
the entire film is observed for high graft levels.

It has been reported that the geometric dimensions of the styrene-grafted
FEP films vary linearly, but not equally, with the increase in the DG. For in-
stance, for a graft level of 52%, an increase of 25% in length as well as width
and 45% increase in thickness have been obtained. Equal distribution of poly-
styrene within the FEP matrix prepared via simultaneous radiation grafting,
at least for a graft level of 21%, has been monitored by Fourier transform
infrared spectroscopy (FTIR) and attenuated total reflection spectroscopy
(ATR) [126]. Similarly, FTIR-ATR was used to determine the surface grafting
yields for styrene grafted onto ETFE by measuring the ratio of absorbance
of the polystyrene peak at 699 cm–1 (C–C wagging band) to the ETFE matrix
band at 1046 cm–1 (–CF2 stretching vibration) [143].

Confocal Raman microscopy has been employed for the investigation of
the changes in membrane composition after fuel cell experiments for PVDF-
based radiation grafted membranes. In fact, severe degradation due to loss of
polystyrene sulfonic acid (PSSA) was observed during the fuel cell run and
only 5–10% of the initial content was found to be left behind. It has been
reported that the degradation is an inhomogenous process that is different
over the membrane surface and through the membrane depth [144]. It was
proposed that the deterioration of fuel cell performance was because of the
loss of entire PSSA chain segments rather than desulfonation [145] and is
supported by the studies on ETFE-based membranes [146] and FEP-based
membranes [125].
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3.2
Surface Chemistry and Surface Morphology

The surface and wetting properties are known to influence the adhesive and
bonding properties of materials [147]. The contact angle measurements of
membranes provide useful information on the surface and interfacial behav-
ior. Graft management within the membrane may take place in such a way
that the surface is rendered hydrophobic in spite of the hydrophilic nature
of the grafted component [148]. This could happen either during the graft-
ing process or during the post-grafting treatments of the copolymer matrix.
A fundamental investigation of the wetting and surface energy properties of
commercial perfluorinated membranes and uncrosslinked radiation grafted
membranes indicated that the surface properties of uncrosslinked radiation
grafted membranes are similar to those of commercial perfluorinated mem-
branes having similar ion-exchange capacities [148]. In addition, the contact
angle of both the grafted and the sulfonated ETFE membranes shows distinct
variations with different wetting agent [149]. The polystyrene-grafted films
do not show any appreciable change with water as a function of graft level, but
measurements with methylene iodide as a probing liquid indicate a decrease
in the contact angle with an increase in graft level. At higher graft levels, the
contact angle has been observed to behave identically to that for a pure poly-
styrene surface. This indicates that the surface of the membrane is rich in
polystyrene. Sulfonation changes the wetting behavior drastically; the contact
angle of water is significantly reduced to 32◦ for a graft level of 82%. This is
an indication of the surface rendered hydrophilic due to the presence of sul-
fonic acid groups. However, absolute values of the contact angle have been
observed to vary significantly in different investigations [85]. Maybe, the na-
ture of the base matrix and the sulfonation process have some impact on the
wetting behavior. The maximum degree of sulfonation in PTFE graft copoly-
mer membranes has been reported to be 50% and may account for the higher
contact angle in these membranes as compared to ETFE membranes [149].

Contact angle measurements on the fully swollen form of the radiation
grafted membranes using several polar, non-polar, hydrogen-bonded, and
non-hydrogen-bonded liquids have been performed by Brack et al. [149]. The
high contact angle of water on the FEP-based membrane revealed the hy-
drophobic nature of the membrane due to the crosslinking and relatively low
degrees of grafting. Moreover, crosslinking has a tendency to limit the mobil-
ity of chain segments. Due to restricted mobility it was difficult to undergo
surface reconstruction to adjust the most favorable local structure at a sur-
face or interface. The membrane cannot adapt a hydrophilic surface when it
is exposed to water during an earlier swelling process [150].

X-ray photoelectron spectroscopy (XPS), provides quantitative informa-
tion on surface chemical structure, chemical composition, and chemical
bonding, and is one of the most extensively used methods for radiation
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grafted films and membranes. This method is useful for investigating the
surface chemistry taking place during the grafting and sulfonation pro-
cesses [151]. XPS has the ability to probe the surface within a few nanometers
and, therefore, interesting information about the chemical composition at
a few top layers is obtained. As a result, the polystyrene graft within and
on the surface of the fluorinated matrix may be monitored [151]. The evolu-
tion of the C–F and the C–H : C–F ratio with respect to the DG or irradiation
dose, as is evident from Fig. 10, indicates a high concentration of C–H, i.e.,
polystyrene chains on the surface [56]. Consequently, a significant loss of
the fluorinated species in the PFA matrix is observed. A strong increase in
the relative amount of C–H bonds at a dose of about 50 kGy is the indica-
tion of grafting taking place at the surface right from the beginning of the
irradiation. As the radiation dose increases, more grafting takes place on the
surface and in the bulk and, finally, the plateau beyond a dose of 250 kGy sug-
gests that at least the top few nanometers of the surface can be considered to
be the polystyrene grafts. Moreover, the matrix with lower crystallinity has
a higher C–H : C–F ratio, suggesting more polystyrene grafts on the film. This,
in principle, substantiates the earlier assumption that the lower crystallinity
makes the matrix more amenable to monomer diffusion and subsequent
grafting with the radical sites.

It was observed that the surface composition is strictly governed by the
degree of crosslinking in FEP membranes [139]. The uncrosslinked FEP-g-
polystyrene copolymer films show a well-defined C–H signal at ∼ 286 eV,
confirming the presence of polystyrene grafts on the surface. The absence of
the –C–F signal in the uncrosslinked films is an indication of the abundance
of the polystyrene on the surface. However, this signal is slowly lost in films
prepared under increasing crosslinker content, while the C–F signal increases
indicating that the polystyrene grafts are more and more confined to the bulk
of the matrix. In addition, the sulfonated matrix shows a similar but weaker
trend. The C–F signal was visible for the uncrosslinked membrane.

Nasef et al. [151, 152] investigated the structural changes enhanced by
styrene grafting and subsequent sulfonation of PTFE film as well as a vari-
ation of the DG of PTFE-based membranes. It was reported that the mem-
branes had side-chain grafts of polystyrene and structures composed of car-
bon, fluorine, sulfur, and oxygen. The authors determined that the base film
undergoes structural changes in terms of chemical composition and shifting
in binding energy. Although the binding energies of C1s, F1s, S2p, and O1s
were found to be independent of DG, the amount of each component was
shown to be dependent on DG.

It was observed that polystyrene grafted in a PVDF matrix under irradi-
ation with γ-rays or heavy ion irradiation exhibited very large domains, when
investigated using small angle X-ray and neutron scattering (respectively,
SAXS and SANS) [153, 154]. The characteristic length of the ionic domains
is observed at very low angles because of the large size of the domains. The
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Fig. 10 Plots of a the atomic ratio of hydrogenated carbons (C–H) to fluorinated car-
bons (C–F) and b the ratio of fluorine (F1s) to fluorinated carbons (C–F) as a function
of applied grafting dose: PFA-A (�) and PFA-B (•). The irradiation was undertaken
in nitrogen gas, with 50% styrene solutions in dichloromethane, and 6.5 kGy h–1 dose
rate) [56]

broad maximum at large angles is only observable in membranes swollen
in heavy water. The grafting in irradiated PVDF gives rise to a swelling on
a microscopic scale, which is limited to low grafting levels (< 10%). The
small-angle upturn observed for a water-swollen sulfonated sample was simi-
lar to that observed for the same sample before sulfonation, due to a dilution
of the sulfonated groups by water swelling. Structural investigation of radi-
ation grafted membranes by SAXS in the dry state of the membrane show
a strong upturn in intensity, as observed over the investigated angular range.
In the swollen state, a very broad maximum with low intensity was deter-

DOI: 10.1007/12_2008_153 Date: 2008-05-21 Proof-Number: 1



1511 1511

1512 1512

1513 1513

1514 1514

1515 1515

1516 1516

1517 1517

1518 1518

1519 1519

1520 1520

1521 1521

1522 1522

1523 1523

1524 1524

1525 1525

1526 1526

1527 1527

1528 1528

1529 1529

1530 1530

1531 1531

1532 1532

1533 1533

1534 1534

1535 1535

1536 1536

1537 1537

1538 1538

1539 1539

1540 1540

1541 1541

1542 1542

1543 1543

1544 1544

1545 1545

1546 1546

1547 1547

1548 1548

1549 1549

1550 1550

1551 1551

1552 1552

1553 1553

1554 1554

Radiation Grafted Membranes 35

mined [155–157]. This difference was attributed to a characteristic distance
between ionic domains.

Recently, the influence of crosslinking with DVB on the morphology of
polystyrene-grafted FEP films was probed by SANS and a characteristic in-
fluence was observed. These results corroborate the interpretation of results
obtained by DSC and TGA, namely the picture of a morphology for a two-
phase semi-crystalline polymer, with the grafting component essentially be-
ing present in the amorphous phase (Mortensen et al. unpublished results).

Surface morphology is one the most important aspects of membrane
design. The morphology is strongly influenced by the nature of the graft
medium, which takes into account both the monomers and the diluents or ad-
ditives. Scanning electron microscopy (SEM) has been an effective tool for vi-
sualizing the surface texture [158]. A distinct difference becomes visible in the
styrene-grafted PVDF vis-à-vis the hexafluoropropylene copolymer of PVDF
membranes. The PVDF membrane shows a much larger but wrinkled struc-
ture on the surface in comparison to the hexafluoropropylene-based PVDF
membrane, which tends to be smoother. These results exhibit the importance
of styrene diffusion within the films, as the monomer diffusion is faster in
the latter film and the polystyrene-grafted layer formation becomes less pro-
nounced, leading to the smoother surface. It should be mentioned here that
the composition of the grafting medium has a strong influence over the sur-
face morphology. The grafting of styrene onto PVDF introduces roughness,
as is evident from SEM characterization [107]. The grafting in toluene as
medium leads to some inhomogenous surface. However, isopropanol as the
grafting medium introduces cavities of ∼ 10 µm diameter. This is essentially
due to precipitation of the polystyrene chains in isopropanol, which leads to
phase separation within the grafted matrix and as a consequence, is reflected
as cavity formation. It is important to mention here that a change in the opac-
ity of the grafted films is observed in the presence of the crosslinker. These
films turn light transparent at higher crosslinker concentration [77]. Cross-
sections of the membranes may be visualized under SEM, where micrographs
can be seen with distinct variation in the morphology of the membrane.
A dark region in the middle and a clean region at one edge become evident
for the ungrafted and grafted regions, respectively [152].

Atomic force microscopy is another interesting tool for investigating the
surface morphology. A three-dimensional profile of the grafted structures
may be achieved, which offers a more informative evaluation than SEM. The
investigations on the surfaces of polystyrene-grafted PVDF films and mem-
branes have revealed the heterogeneous character of membrane surfaces with
alternation of PVDF and PSSA [140]. It was reported that after grafting the
surfaces were found to be inhomogenous, and that blobs of polystyrene (do-
main size of 0.1–2 µm) were observed on the surface. Such a behavior arises
due to the incompatibility of the grafted component and the base polymer
films. As a matter of fact, the grafted components remain as distinct isolated
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phases within the fluorinated matrix and remain visible as inhomogeneity
on the film surface. However, after sulfonation the blobs disappeared and the
membrane surface became visually smoother [140]. Similarly, it was reported
previously for polystyrene-grafted FEP membranes that the incompatibility
between the hydrophobic perfluorinated backbone and the hydrophilic PSSA
was overcome at high degrees of grafting and that the whole matrix behaved
as a hydrophilic matrix. As a consequence, the film swells homogeneously in
water leading to a smooth surface [138].

3.3
Thermal Characterization

Thermal behavior of radiation grafted films and membranes have been inves-
tigated mainly by using thermogravimetric analysis (TGA) and differential
scanning calorimetry (DSC). It has been observed from TGA that a two-step
degradation pattern is exhibited by styrene-grafted FEP-based films, indi-
cating that the degradation of grafted polystyrene and that of the FEP base
polymer occurred independently from each other [114, 159, 160]. In add-
ition, the degradation pattern was found not to be much affected by the
DG [101]. This shows that the polystyrene-grafted FEP copolymer films be-
have as a distinct two-phase system, where the polystyrene moiety forms
a separate micro-domain within the FEP matrix. Similar observations have
been made for the polystyrene-grafted FEP, ETFE, and PVDF films [161, 162],
PFA films [115, 163], and PVDF films [164].

Sulfonation changes the stability pattern of membranes completely. The
thermal degradation behavior of FEP-based membranes has been investigated
previously by TGA in combination with FTIR and mass spectroscopy [160].
As presented in Fig. 11, unlike the two-step degradation pattern of the grafted
films, a three-step weight loss pattern was observed for radiation grafted mem-
branes and has been ascribed to dehydration of the membrane, desulfonation,
and de-aromatization reactions, and finally degradation of the backbone [160].
a similar degradation pattern has been reported in the literature for the other
radiation grafted membranes [135, 159, 161, 162, 164, 165].

It is important to understand that every step of membrane preparation,
i.e., irradiation, grafting and sulfonation leads to certain changes in the crys-
talline structure. For instance, the incorporation of polystyrene grafts caused
an increase in amorphous fraction and restricted the mobility of the chains,
and Tg increased. Similarly, the incorporation of the sulfonic acid groups
caused ionic interactions, and the mobility of the molecular chains and Tg
increased. The slight decrease in Tm was attributed to the changes in ori-
ginal crystal size by styrene grafting and little disruption in the crystalline
region was observed [165]. Moreover, the grafting process leads to a decrease
in the heat of fusion with an increase in the DG in FEP-g-polystyrene copoly-
mer films [114]. This arises because of the dilution effect on inherent crys-
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Fig. 11 Gaseous evolution pattern of FEP-based membranes [160]

tallinity of FEP by the incorporation of amorphous polystyrene grafts within
the non-crystalline region of the film. According to the investigation of Car-
dona et al. [163] for PFA-based films, a relatively small decrease in inherent
crystallinity after grafting has been observed since grafting occurred prefer-
entially in the amorphous phase of the semi-crystalline polymer (diffusion
was slow and radicals were less reactive in the crystalline phase). However,
sulfonation of the grafted films leads to further decrease in the heat of fusion
of the membranes (Fig. 12), and consequently decreases crystallinity [166]. It
has been indicated that the loss of crystallinity in membranes is in addition to
the changes induced by the dilution effect. These changes have been identified
as crystal defects, as is evident from the loss of heat of fusion in Fig. 12. It is
in fact the hydrophilic PSSA domains within the hydrophobic FEP matrix that
absorb water and so strong hydrophilic–hydrophobic stresses develop in the
water-swollen membrane and may be the reason for the distortion of the crys-
tallite. This sounds reasonable considering the distortion of crystallites that
has been observed in the sulfonation of polyethylene [167] and recently also
in PVDF-g-PS [169].

The trend in the crystallinity of PTFE-based membranes seems to be dif-
ferent than for FEP membranes [151]. The grafting of styrene into PTFE film
decreases the crystallinity from 43.2 to 32.1% for a graft level of 36%, which
subsequently reduces to 21% on sulfonation. Although this trend accounts
for the preservation of the inherent crystallites during the grafting and sul-
fonation processes, the authors attribute it solely to the dilution effect [169].
It seems that crystal distortion is also prevalent in this system because the
crystallinity decreases more (21%) than if only the dilution effect persisted
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Fig. 12 Variation of the heat of fusion of the membrane ∆Hf(mem), FEP component in the
membrane ∆Hf(fep), and inherent value ∆Hf(inh) with the cumulative weight fraction of
acid group and water (1 – Wx) [166]

(23.4%). However, there have been more investigations on the crystallinity
variations of grafted films and sulfonated membranes based on poly(vinyl
fluoride), PVDF, ETFE, and FEP using DSC [65]. It was observed that the
dilution effect of grafted component is the only factor that influences the
overall crystallinity, suggesting that the inherent crystallinity remains intact.
This is supported by a decrease in crystallinity content with the increasing
graft level of styrene-grafted PFA films, which is interpreted as indicating
that this behavior is the dilution and partial destruction of the inherent crys-
tallinity [115].

In a recent investigation, the influence of the irradiation and grafting pro-
cesses on the crystallinity have been investigated for three base polymers by
DSC [161]. The grafting process has been found to have the largest effect
on base polymer crystallinity and resulted in a reduction of crystallinity in
all cases. In addition, the authors reported as a result of TGA investigation
that the extent of fluorination of the base polymer, the graft level, and the ir-
radiation method all had important influences on the thermal degradation of
the films and the activation energy for this process. These results were nicely
confirmed for ETFE-g-polystyrene-based membranes [118, 162].

The X-ray diffraction studies have been interesting in supporting the ob-
servations on the crystallinity of membranes determined by DSC. The crys-
talline reflections in graft copolymer membranes with different degrees of
grafting fall on identical angles. However, their intensity decreases, suggest-
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ing a decrease in their inherent crystallinity [74, 169]. A detailed characteri-
zation of a number of radiation grafted fluorinated films has been carried out
to give a deeper glimpse of the crystal structure and orientation of the crys-
talline zone [170]. The grafting and subsequent sulfonation of the films led to
a decrease in the crystallinity in each step again, because of the incorporation
of amorphous polystyrene chains in the non-crystalline region of the film.
The full width at half-maximum did not change, indicating the stability in the
orientation. This shows that the grafted chains are bound to the amorphous
region and do not disturb the crystalline region of PVDF films.

The effect of crosslinking on the degradation of the FEP-based grafted
films and membranes have been investigated using TGA coupled to FTIR [171].
It was found that crosslinking causes a shift of the de-aromatization reaction
to higher temperatures; however, the desulfonation reaction was shifted to
lower temperatures. DVB increases the thermal stability of polystyrene grafts,
facilitates the desulfonation process, and leads to a higher ash content.

3.4
Mechanical Properties

Mechanical integrity is one of the most important prerequisites for fuel cell
membranes in terms of handling and fabrication of membrane electrode as-
semblies, and to offer a durable material. Robust fuel cell membranes are
required because of the presence of mechanical and swelling stresses in the
application [172]. Moreover, membranes should possess some degree of elas-
ticity or elongation to prevent crack formation.

Typical mechanical properties of polystyrene-grafted FEP- and ETFE-
based membranes have been investigated previously [62, 63, 146]. It has been
reported that ETFE-based grafted films and membranes exhibit compara-
bly better mechanical properties than FEP-based ones since ETFE films are
available at higher molecular weight, which enhances breaking strength and
flexibility. In addition, FEP undergoes a greater extent of chain scission re-
actions compared to ETFE. For both ETFE and FEP, the membranes from
electron beam irradiation under inert atmosphere have better mechanical
properties than the membranes from gamma irradiation under air. It is ob-
served that thinner membranes possess poorer mechanical properties than
the thicker membranes. Crosslinker also affects the mechanical properties
and highly crosslinked membranes have poorer mechanical properties than
the membranes with lower levels of crosslinker [62, 63]. The mechanical prop-
erties of FEP-based membranes are superior to those of the grafted films and
may be due to the plastizing effect of water in the swollen membrane [62].
Similarly, the tensile properties of the grafted films and membranes are also
reported [65].

The influence of irradiation dose and grafting solution on the mechanical
properties of styrene-grafted FEP-based films has been investigated previ-
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Fig. 13 a Stress–strain curves for pristine FEP and grafted films with different DG.
b Elongation at break of grafted films as a function of DG, preirradiation dose, and
type of solvent: FEP 25 µm, 10% DVB in solvents toluene, isopropanol (iPrOH), iso-
propanol/water mixture (iPrOH/water), and sodiumdodecyl sulfate/water (SDS/water) [76]

ously [76]. The elongation values of grafted films are lower than those of the
unmodified base polymer (Fig. 13a). As presented in Fig. 13b, an increase of
irradiation dose leads to considerable deterioration in the mechanical prop-
erties of pristine FEP and grafted FEP films. The loss in elongation at break
with higher irradiation dose is attributed to an increased radiation damage
to the trunk polymer. However, the type of solvent used during grafting has
no significant effect on the elongation at break (Fig. 13b). Walsby et al. [107]
has pointed out that the mechanical properties of PVDF-g-polystyrene films
are seriously affected by the nature of the grafting medium. It was shown that
better mechanical properties were obtained for the films in toluene compared
to those in isopropanol. These and other authors have also reported that the
mechanical properties of the base film in the machine direction and trans-
verse direction differ significantly [118]. Although the film elongates several
times compared to its initial length in the machine direction, elongation is
negligible in the transverse direction.

4
Fuel Cell Application

4.1
Membrane Properties Relevant to Fuel Cell Application

In the polymer electrolyte fuel cell (PEFC), proton-conducting cation-
exchange membranes are used as electrolyte, which consist of an organic
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polymer structure (crosslinked or uncrosslinked) containing pendant acid
functional groups, e.g., sulfonic acid –SO3H [173]. Hydration of the mem-
brane (i.e., incorporation of water molecules into the polymer structure)
leads to dissociation of the acid groups into mobile H+(aq) and immobile
anions fixed to the polymer backbone. The resulting nanophase-separated
structure is an interpenetrating network of hydrophobic polymer back-
bone material providing structural integrity and aqueous domains allow-
ing proton transport within water-containing channels. The proton con-
ductivity of the material depends on the density of acidic groups, their
dissociation constant (pKa), and on the mobility of the proton, which is
governed by the level of hydration (i.e., the water content of the mem-
brane) and the geometry (dimensions, connectivity) of the hydrophilic
channels.

4.1.1
Ion Exchange Capacity

The requirement of water within the polymer structure as a proton trans-
port medium limits the operating temperature of such membranes to below
100 ◦C at moderate pressure. Alternative membrane concepts using anhy-
drous proton conduction are under development. Among the approaches,
phosphoric acid-doped polybenzimidazole appears among the most promis-
ing. Here, protons are transported via a phosphoric acid network [174].
The technology of radiation grafting has not been adopted for the prep-
aration of water-free membranes for high temperature operation, with the
exception of the work mentioned in a patent by Toyota [175]. The method
involves grafting of vinylpyridine onto an ETFE or PVDF backbone, fol-
lowed by imbibition of the film with phosphoric acid. However, due to
the limited references in this area, the following discussion will be con-
cerned with radiation grafted membranes with a water-based proton trans-
port mechanism.

In radiation grafted proton-exchange membranes, the structural integrity
of the component originates from the base polymer film, and the proton con-
duction functionality is introduced with the graft component. Therefore, it
can be expected that the proton conductivity will be a function of the num-
ber of exchange sites within a given membrane portion. The corresponding
parameter is the ion exchange capacity (IEC), which is defined as:

IEC =
n(SO3H)
mpolymer

, (1)

where n(SO3H) is the number of exchange sites and mpolymer is the dry mass
of the polymer. The IEC is determined by titration [149]. Obviously, the IEC
increases as a function of DG (Fig. 14). For styrene-grafted membranes, the
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theoretical IEC, assuming one sulfonic acid group per aromatic ring, is:

IECth =
DG

MS + DG·MSSA
, (2)

where MS = 104 g mol–1 is the molar mass of styrene, and MSSA = 184 g mol–1

is the molar mass of styrene sulfonic acid. It can be deduced from Eq. 2 that
for high levels of grafting, the theoretical IEC approaches the value for pure
sulfonated polystyrene, which is:

lim
DG→∞ IECth =

1
MSSA

= 5.4 mmol g–1 . (3)

Yet, the IEC value gives no indication about the distribution of the exchange
sites across the membrane thickness, which is of course of paramount impor-
tance for the protons to be transported all the way from anode to cathode.
It is possible that the conductivity of a membrane sample is low, even if the
IEC is at acceptable levels. This happens when the grafting has not proceeded
through the entire thickness of the base polymer film. Often, a threshold DG
is observed, below which the conductivity is unmeasurably low, and above
which acceptable conductivity is obtained [157, 176, 177]. The explanation
is that at low degrees of grafting, the center of the membrane remains un-

Fig. 14 The ion exchange capacity (IEC) of styrene-grafted and sulfonated membranes as
a function of DG. The solid line represents the theoretical IEC for 100% degree of sul-
fonation, corresponding to one sulfonic acid group per aromatic ring (data for PFA120
crosslinked redrawn from [130]; data for ETFE50 redrawn from [213]; data for PSI FEP50
redrawn from [151])
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grafted, and only above the threshold do continuous hydrophilic channels for
proton transport exists through the membrane.

4.1.2
Water Uptake

As the acidic groups need to dissociate for the proton to become mobile, one
can expect that the water content of the membrane will also have a strong
influence on conductivity. Proton transport occurs either via hopping of pro-
tons from one water molecule to the next (Grotthus mechanism) or via the net
transport of H3O+ or other aggregates of water and H+ [178]. Evidently, as
the DG increases and with it the number of ion exchange sites, so will the hy-
drophilicity of the material, resulting in an increase of the water uptake. The
water uptake (φ) is expressed according to:

φ =
mw – md

md
100% , (4)

where mw and md are the mass of the wet and dry membrane, respectively.
A quantity that is often used to describe the water uptake of an ion exchange
membrane is the so-called hydration number (λ), which is the number of

Fig. 15 Water uptake, expressed as the number of water molecules n(H2O) per sulfonic
acid site n(SO–

3), as a function of DG (data for PFA120 crosslinked redrawn from [200];
data for ETFE50 redrawn from [213]; data for PSI FEP50 redrawn from [135])
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water molecules n(H2O) per sulfonic acid site n(SO3H). λ is defined by:

λ =
n(H2O)

n(SO3H)
=

mwater

IEC·Mwater
, (5)

where Mwater = 18 g mol–1 is the molar mass of water. It is usually observed
that the hydration number increases with the DG (Fig. 15), which points to
the fact that as the membrane gets more hydrophilic upon incorporation of
the graft component, the acidic sites become increasingly hydrated.

Monomers that act as crosslinking agents, such as DVB or bis(vinyl
phenyl)ethane are introduced as comonomers, in some cases to improve the
dimensional and chemical stability of the membrane (as shown in Sect. 2.5).
It is observed that the IEC of crosslinked membranes does not differ from that
of uncrosslinked membranes with the same graft level (Fig. 14) [115, 118, 121,
125, 157]. This means that the introduced ionic sites are equally accessible
through the hydrophilic domains in crosslinked membranes, regardless of the
more constrained polymer framework, at least up to the level of crosslinking
agent investigated, which is around 20%. The amount of swelling is sub-
stantially reduced upon crosslinking, which is the reason for the improved
dimensional stability of crosslinked membranes (Fig. 15) [115, 125, 127]. Con-
sequently, the hydration number decreases as the degree of crosslinking in-
creases at a given graft level. We will see in the next section how this affects
the conductivity of the material.

Fig. 16 Conductivity of various radiation grafted membranes as a function of DG at room
temperature (data for PFA120 crosslinked redrawn from [200]; data for ETFE50 redrawn
from [213]; data for PSI FEP50 redrawn from [135]; data for PVDF80 redrawn from [187])
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4.1.3
Conductivity

As expected, the conductivity of radiation grafted ion exchange membranes
increases with increasing DG, both for crosslinked and uncrosslinked mem-
branes. There is, however, a tremendous range of conductivity values re-
ported by different authors. The values range from < 1 up to 300 mS cm–1 at
room temperature in fully hydrated (i.e., liquid–water equilibrated) state. The
measured conductivity is governed or influenced by a number of parameters,
above all by the distribution of the graft component across the membrane,
as mentioned [157, 176, 177]. The base film thickness also appears to have
an influence in some cases, thicker base films yielding a higher conductiv-
ity [63, 125, 146]. It is conceivable that this is a surface effect, i.e., that regions
close to the surface of the irradiated film are less grafted, potentially due to
loss of radical sites caused by exposure of the material to oxygen and water
in the air. On the other hand, this thickness effect can also be observed for
Nafion [146], so it may also be a physical effect, presumably unfavorable ag-
gregation or conformation of the ionophoric side chains close to the surface.

Proton conductivity (σH+) can be related to the proton diffusion coefficient
DH+ using the Nernst–Einstein equation [179]:

σH+ =
DH+ cH+z2F2

RT
, (6)

where cH+ is the volumetric density of protons and z, F, R, and T have
the usual meaning. Proton diffusion in water and proton-exchange mem-
branes is thermally activated, hence the quantity σ ·T shows a temperature
dependence of Arrhenius type. For perfluorosulfonic acid membranes such
as Nafion, activation energies between 12 and 15 kJ mol–1 are obtained [180].
As a comparison, 10.3 kJ mol–1 are found for pure water [181]. For radiation
grafted membranes, only limited data is available. For the conductivity of un-
crosslinked PVDF-based membranes in the temperature range between 20
and 70 ◦C, an activation energy similar to Nafion 105 was found, yet quan-
titative values were not given [182]. Changes in membrane morphology and
water uptake with temperature were put forward as further contributions to
the increase in conductivity, in addition to the higher mobility of the protons.
The resistance of membranes from Solvay, based on ETFE and crosslinked
with DVB, was measured in situ during DMFC operation in a temperature
range between 90 and 130 ◦C [183], and an activation energy of around
18 kJ mol–1 was calculated. A study carried out in the authors’ laboratory,
using water-swollen crosslinked and uncrosslinked FEP- and ETFE-based
membranes with 20–25% graft level, showed higher activation energy for the
crosslinked membranes (15.0–15.5 kJ mol–1) compared to the uncrosslinked
ones (14.0–14.5 kJ mol–1), which may be a consequence of higher association
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of the protons with the counterions or polymer in crosslinked membranes,
which have lower water uptake [184].

In addition to the conductivity in the water-swollen state, the conductiv-
ity of the fuel cell membrane under non-saturated water vapor conditions
is of importance as, during cell operation, partial drying of the membrane
and electrodes may occur. Also, fuel cell operation with partially humidified
or even dry reactant gases is highly desirable to minimize system complex-
ity. Walsby et al. [185] has investigated the influence of relative humidity on
conductivity of radiation grafted membranes (Fig. 17). It was found that al-
though the radiation grafted membranes displayed a superior conductivity at
a relative humidity of 100%, the value dropped below that of Nafion at rela-
tive humidities between 40 and 85%. Below 40%, all the membranes exhibited
poor conductivity of around 1 mS cm–1 or lower. The different behavior could
again be indicative of a dissimilar microstructure, polymer domain morph-
ology, or extent of hydrophilic–hydrophobic phase separation [178]. There
is no literature data on the polymer morphology of radiation grafted mem-
branes; it is, however, likely that the microstructure will depend to a large
extent on base film type, graft level, extent of crosslinking, and other design
and process parameters. A sorption curve qualitatively similar to the data
shown in Fig. 17 for radiation grafted membranes is observed for sulfonated
poly(ether ketone) membranes. The strong drop in conductivity below 90%
relative humidity is attributed to a less effective phase separation in polymer

Fig. 17 Influence of relative humidity on conductivity at room temperature. Radiation
grafted membranes are not crosslinked and have DG between 34 and 40% (redrawn
from [206])
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Table 4 Physical properties of radiation grafted membranes with different extent of
crosslinking (redrawn from [121])

Base Degree of Degree of Ion exchange Water Conductivity c

polymer grafting crosslinking a capacity content b

(mass %) (mol %) (mmol g–1) (H2O/SO3H) (mS cm–1)

FEP-50 19.1 0 1.39 27.2 98
FEP-50 18.8 3 1.07 25.9 93
FEP-50 19.6 6 n/a 11.9 63
FEP-50 19.0 12 1.27 7.0 28

a Determined in grafted films via FTIR
b Swollen in boiling water
c Determined in situ, fuel cell temperature of 40 ◦C, using equipment built in-house

backbone and proton conducting aqueous channels, a less favorable percola-
tion of the hydrophilic domains, and higher localization of the protons due to
the higher pKa value compared to Nafion [186].

For crosslinked membranes, the situation is somewhat different. Depend-
ing on the extent of crosslinking, excessive water uptake under fully humid-
ified conditions is inhibited due to the network of covalent bonds in the
polymer [184]. The effect of crosslinking on water uptake and conductivity
has been investigated by Büchi et al. [125], as given in Table 4. For mem-
branes of similar DG, it is observed that an increase in crosslinker content
results in a decrease of water uptake and conductivity [118]. If the conductiv-
ity is plotted versus the water content, an approximately linear correlation is
found, suggesting that the proton mobility is governed to a large extent by the
hydration level of the material.

4.2
Performance in Fuel Cells

In PEFC, the membrane, together with the electrodes, forms the basic elec-
trochemical unit, the membrane electrode assembly (MEA). Whereas the first
and foremost function of the electrolyte membrane is the transport of pro-
tons from anode to cathode, the electrodes host the electrochemical reactions
within the catalyst layer and provide electronic conductivity on the one hand,
and pathways for reactant supply to and removal of products from the cata-
lyst on the other hand. The components of the MEA need to be chemically
stable for several thousands of hours in the fuel cell under the prevailing
operating and transient conditions. PEFC electrodes are wet-proofed fibrous
carbon sheet materials of a few 100 µm thickness. The functionality of the
proton-exchange membrane extends to requirements of mechanical stability
to ensure effective separation of anode and cathode, also under aggravated
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conditions such as operation on reactant gases below the water vapor satura-
tion point, fuel cell start-up, and transient load. For a detailed review of fuel
cell performance and in situ characteristics of radiation grafted membranes,
the reader is referred to an article from the authors’ laboratory published
recently [43]. In this contribution, the insights are presented in a distilled
manner with condensed facts and conclusions.

4.2.1
MEA Fabrication

The formation of an intimate contact between membrane and electrodes
during MEA fabrication is of high importance to minimize interfacial volt-
age losses. When using radiation grafted membranes together with elec-
trodes containing Nafion as ionomer, it has been found that the membrane–
electrode interface is of inferior quality compared to when Nafion is used
as membrane, resulting in a higher resistance and/or insufficient adhesion
or delamination [61, 182, 187]. The likely reason for this is the mismatch in
ionomer type between the membrane and electrode catalyst layer. Huslage
et al. [60] and Gubler et al. [61] found that dip-coating FEP-based radia-
tion grafted membranes in solubilized Nafion prior to hotpressing leads to
an improved fuel cell performance and lower impedance of the single cell.
Furthermore, these authors showed that hotpressing with the membrane in
wet state resulted in an improved membrane–electrode interface compared to
when hotpressing with the membrane in dry state, which can be explained on
the basis of the water acting as a plasticizer, allowing polymer flow during the
hotpressing process.

4.2.2
Fuel Cell Testing

Generally, little fuel cell testing using radiation grafted membranes has been
reported in the literature, compared to the total number of articles on the
subject. Frequently, characterization is restricted to the membrane, and is
not extended to include fabrication of MEAs and fuel cell testing. Important
insights relating to electrochemical performance, membrane–electrode inter-
face properties, membrane integrity, and lifetime are therefore missing. Of
the studies published that include fuel cell test results, selected articles are
reviewed in the following sections to highlight specific aspects.

4.2.3
Water States and Water Management

In the characterization of fuel cell membranes, there are a number of import-
ant materials and component properties that have to be assessed in order to
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determine the applicability and operability in the fuel cell environment Fig. 18.
Since proton mobility within the polymer structure is a strong function of the
water content, the water uptake and transport properties of the membrane are
of paramount importance, determining the water profile through the thick-
ness of the membrane as well as in-plane. Water transport mechanisms in the
polymer are diffusion due to a gradient in water content, hydraulic perme-
ation as a consequence of a pressure gradient between anode and cathode, and
electroosmotic drag, i.e., water flux coupled to proton transport.

The states of water have an important role to play in determining the trans-
port behavior of protons in membranes. The water directly associated with
ionic sites in a membrane may behave in a way different from normal water
due to its strong association in the form of hydrogen bonding or polar inter-
actions with the functional sites within the membrane. Such water does not
show any phase transition such as crystallization or melting in the tempera-
ture range 200–273 K. Using DSC, three different types of water molecules
have been identified in sulfonated FEP-g-polystyrene membranes, which may
be categorized as the freezing free, freezing bound, and non-freezing wa-
ter [188]. The relative ratio of these three types of water molecules depends
on the DG. The non-freezing water per ionic sites remains independent of the
DG. However, the freezing free and freezing bound water per ionic site tends
to increase with the DG (Fig. 19). The non-freezing water was evaluated to be
six to eight water molecules per ionic site in membranes with DG in the range
15–40%. Recent investigations on membranes based on styrene grafting on
different films showed that the non-freezing water remains almost the same,
irrespective of the chemical nature of the membranes, and corresponds to ten
water molecules per ionic site [185]. This is further supported by the studies
on crosslinked PVDF membranes.

Fig. 18 Requirements for fuel cell membranes
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Fig. 19 Variation of water/ionic site ratio with DG for FEP-based membranes: Wt total
water uptake, Wf freezing uptake, and Wnf non-freezing water uptake [188]

It may be stated that any increase in the water content with higher graft
levels is associated with the incorporation of freezing water and should facili-
tate the ionic mobility [188]. With the increase in each grafting molecule, the
hydrophilicity of the membrane matrix increases and crystallinity decreases.
The structure as a result becomes more amenable to water penetration within
the matrix. The crosslinking, however, influences the water uptake and its
states. Highly crosslinked membranes developed from the DVB–styrene sys-
tem do not show any freezing water and all of the water that accounts for the
swelling of the membrane tends to be non-freezing in nature [129].

4.2.4
Reactant Permeability

Whereas uniform distribution of water within the membrane is desired, the
permeability of the material to reactants (i.e., hydrogen or methanol and
oxygen) has to be low to prevent direct chemical reaction between fuel and
oxidant, which may lead to hotspots and, eventually, pinhole formation.
Methanol permeability is a major challenge in the direct methanol fuel cell
(DMFC), largely because methanol transport is strongly correlated with water
transport, leading to significant penalties in fuel efficiency and poor cathode
performance [189].

4.2.5
Chemical Stability

Chemical integrity of the polymer has to be maintained at the desired op-
erating conditions for the designated operating time. The hostile fuel cell
environment is a consequence of the simultaneous presence of H2, O2, H2O2

DOI: 10.1007/12_2008_153 Date: 2008-05-21 Proof-Number: 1



2215 2215

2216 2216

2217 2217

2218 2218

2219 2219

2220 2220

2221 2221

2222 2222

2223 2223

2224 2224

2225 2225

2226 2226

2227 2227

2228 2228

2229 2229

2230 2230

2231 2231

2232 2232

2233 2233

2234 2234

2235 2235

2236 2236

2237 2237

2238 2238

2239 2239

2240 2240

2241 2241

2242 2242

2243 2243

2244 2244

2245 2245

2246 2246

2247 2247

2248 2248

2249 2249

2250 2250

2251 2251

2252 2252

2253 2253

2254 2254

2255 2255

2256 2256

2257 2257

2258 2258

Radiation Grafted Membranes 51

as intermediate, the noble metal catalyst, and possibly metallic contami-
nants such as Fe ions. It is widely accepted that radicals generated within
this environment, such as hydroxyl (HO·) and hydroperoxyl (HO2

·) radicals,
chemically attack the polymer, causing chain scission [190–195].

4.2.6
Mechanical Integrity

Furthermore, the material has to exhibit sufficient mechanical stability in
order to fulfil its separator function. Not only tensile strength and elonga-
tion at break values have to be considered, but also dimensional stability upon
swelling, and resistance to crack formation and propagation. Creep of the
polymer is likely to occur because the water-swollen membrane is plasticized
and the membrane is under a constant compaction force in the cell [196]. This
may lead to membrane thinning and, eventually, puncturing a pinhole for-
mation. An effect especially pertaining to swelling of the polymer upon water
sorption is a fatigue-type phenomenon when the membrane electrode assem-
bly is subjected to dry–wet cycles, which leads to periodic stress build up and
relaxation in the membrane and, ultimately, to crack formation. This has been
observed to be a membrane failure mode [197].

4.2.7
Fuel Cell Performance

Fuel cell characterization using radiation grafted membranes is mentioned
in the work of Sundholm et al. [182, 198–200], Horsfall and Lovell [187,
201], Scott et al. [202], Nasef and Saidi [203], Hatanaka et al. [204], Aricò
et al. [183], and Scherer et al. [61, 205–210] (in the last 5 years). In addition, in
recent patent literature Ballard Power Systems [97, 211], Aisin Seiki [89, 91],
and Pirelli [92] have filed inventions related to radiation grafted fuel cells
membranes. The reported fuel cell performance characteristics span a sub-
stantial range, from unacceptably poor to values approaching or exceeding
comparative samples based on Nafion membranes [43]. It has to be empha-
sized at this point that direct comparison of fuel cell test data is not always
straightforward and can be misleading. Occasionally, the grafted membranes
used are thinner than the respective Nafion comparison example. Conse-
quently, similar fuel cell performance can be obtained although the conduc-
tivities of the two membrane materials are notably dissimilar. Crosslinked
membranes have been used only in the minority of experiments by Nezu
et al. [89], Aricò et al. [183], and in our own laboratory, e.g., [207]. The in-
fluence of DVB as crosslinker on ex situ membrane properties was discussed
earlier. In the fuel cell, the level of crosslinking affects performance as well
as durability [208] (also, Gubler et al. unpublished results). Optimum per-
formance was found for 10% DVB content as a consequence of balanced
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membrane resistance and membrane–electrode interface characteristics. Sta-
ble performance was observed over a few hundred hours only for membranes
with 10 and 20% DVB; the lower crosslinked membranes showed significant
degradation. Membranes with high crosslinker content of 20% or more, how-
ever, suffer from poor mechanical properties. The increasing brittleness of the
material can lead to membrane cracking during MEA fabrication or fuel cell
operation.

One of the degradation modes observed using radiation grafted fuel cell
membranes is correlated with reactant gas (i.e., H2 and O2) permeability
through the membrane. Kallio et al. [182] found that oxygen diffusion and
permeability increase with increasing water uptake and thus with DG. The
open circuit voltage of the fuel cell was observed to be lower for mem-
branes with higher water uptake, indicating a higher extent of mixed potential
formation, especially on the cathode, due to gas permeation. Similar obser-
vations were made by Büchi et al. [125] as lower degrees of crosslinking at
similar graft level yield membranes with higher water uptake, higher gas per-
meation, lower open circuit voltage, and shorter membrane lifetime in the
fuel cell.

As an example for MEA performance, Fig. 20 shows the polarization
behavior of an optimized radiation grafted membrane on the basis of
FEP-25 film with 18% DG and 10% crosslinker content, compared against

Fig. 20 Single cell performance comparison. Conditions: cell temperature 80 ◦C, H2 stoi-
chiometry 1.5, O2/air stoichiometry 9.5/2.0, both fuel and oxidant reactant gases fully
humidified, ambient pressure. Ohmic resistance was determined using auxiliary fast-
current pulses according to [214]
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a Nafion 112-based MEA. The polarization curve of the two MEAs is similar,
with a slightly lower ohmic resistance of the sample with the grafted mem-
brane, which, however, is offset by a slightly higher interface resistance. This
membrane is optimized for performance, durability, and mechanical stabil-
ity. A membrane of this configuration was operated for over 4000 h at a cell
temperature of 80 ◦C without loss in performance [61].

Very promising fuel cell performance results with respect to longevity
were obtained with a novel monomer combination, namely a mixture of α-
methylstyrene and methacrylonitrile as graft component [44]. Although these
preliminary tests were carried out with non-crosslinked membranes, they
nicely show the positive effect of substituting the α-H atom by a methyl group
on stability under fuel cell test conditions. Testing of crosslinked membranes
is ongoing (Gubler et al. unpublished results).

4.2.8
Performance in Direct Methanol Fuel Cells

The technology of radiation grafting of membranes is particularly interest-
ing for the direct methanol fuel cell (DMFC), because the process parameters
can be easily tuned to produce membranes with lower water and methanol

Fig. 21 Water permeation from anode to cathode in the direct methanol fuel cell for radia-
tion grafted membranes based on FEP with different initial film thickness (25 and 75 µm)
and Nafion 117. The electroosmotic drag coefficient H2O/H+ is calculated from the slope
of the regression line. Conditions: cell temperature 90 ◦C, pressure 2 bar, 20 mL min–1,
0.5 M methanol, air stoichiometry is 2.0 for FEP and 3.0 for Nafion 117
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uptake, and with the desired transport properties [200, 212]. Compared to
membranes used in the hydrogen fuel cell, optimized membranes for the
DMFC are fabricated using thicker base film such as FEP 75 µm and having
a lower DG [209]. With such membranes, identical performance is obtained
compared to the Nafion 117 standard, yet with methanol permeation reduced
by 40%. In addition, lower water transport from anode to cathode leads to less
cathode flooding. Water permeation data from anode to cathode for two ra-
diation grafted membranes based on FEP-25 and FEP-75, and for Nafion 117
are shown in Fig. 21. Water transport through these membranes appears
to depend linearly on the cell current with comparably little permeation at
zero current, indicating that the dominant mechanism for water transport is
electroosmotic drag. From the slope of the curves, the electroosmotic drag
coefficient can be calculated, yielding a value of 1.7 for the crosslinked radia-
tion grafted membranes and 5.0 for Nafion 117. Also, the reader may note that
there is no marked difference in water permeation between the two grafted
membranes of different thickness, reinforcing the conclusion that electroos-
motic drag is dominant, and not diffusion.

5
Conclusions

This review demonstrates that radiation grafted membranes can be used
successfully as solid polymer electrolytes for fuel cells. The membranes fab-
ricated by radiation-induced grafting offer a cost-competitive option since
inexpensive commercial materials are used and the preparation procedure
is based on established industrial processes. Radiation-induced grafting is
an attractive method to introduce desirable properties into a polymer owing
to its simplicity in handling and its control over the grafting process. The
method allows the use of a wide range of polymer–monomer combinations,
such as various fluoropolymer films and vinyl and acrylic monomers. Par-
tially fluorinated and perfluorinated polymers have been frequently used as
base polymer to meet the requirements for chemically and thermally stable
proton conducting membranes. Styrene and styrene derivatives have been ex-
tensively used as the monomer since grafted styrene can be readily modified
to introduce a variety of functionalities.

Grafting parameters (irradiation dose, monomer concentration, grafting
medium, temperature, etc.) have significant influence not only on grafting
yield and grafting kinetics but also on resultant film and membrane prop-
erties. Crosslinkers are used in conjunction with the monomer to achieve
certain desirable properties. For instance, the use of crosslinker is an effective
means of enhancing the stability of styrene-grafted membranes in fuel cells.

Investigation of the structure, morphology, homogeneity, thermal and me-
chanical properties of both the grafted films and the membranes is important
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for understanding the grafting process and the operation mechanisms of the
membranes. Several characterization methods are available to examine these
properties.

The identification of membrane properties relevant to fuel cells (ion ex-
change capacity, water uptake, conductivity), aspects of membrane electrode
assembly fabrication, and fuel cell performance are described in detail in this
review.
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